Journal Article
F. Ren and Marković, D. ,
“True Energy-performance Analysis Of The MTJ-based Logic-in-memory Architecture (1-bit Full Adder)”,
IEEE Transactions on Electron Devices, vol. 57, no. 5, pp. 1023–1028, 2010.
(632.59 KB) M. Hassan Quraishi, Bank-Tavakoli, E. , and Ren, F. ,
“A Survey of System Architectures and Techniques for FPGA Virtualization”,
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp. 2216-2230, 2021.
(435.22 KB) L. Cheng, Xu, W. , Ren, F. , Gong, F. , Gupta, P. , and He, L. ,
“Statistical Timing and Power Analysis of VLSI Considering Non-linear Dependence”,
the VLSI Journal Integration, vol. 47, no. 4, pp. 487–498, 2014.
(845.26 KB) F. Ren, Zhang, C. , Liu, L. , Xu, W. , Owall, V. , and Marković, D. ,
“A Square-Root-Free Matrix Decomposition Method for Energy-Efficient Least Square Computation on Embedded Systems”,
IEEE Embedded Systems Letters, vol. 6, no. 4, pp. 73–76, 2014.
(912.74 KB) J. A. Tropp and Gilbert, A. C. ,
“Signal recovery from random measurements via orthogonal matching pursuit”,
IEEE Transactions on information theory, vol. 53, pp. 4655–4666, 2007.
F. Ren, Xu, W. , and Marković, D. ,
“Scalable and Parameterised VLSI Architecture for Efficient Sparse Approximation in FPGAs And SoCs”,
IET Electronics Letters, vol. 49, no. 23, pp. 1440–1441, 2013.
(154.45 KB) R. Dorrance, Ren, F. , Toriyama, Y. , Hafez, A. Amin, Yang, C. - K. K. , and Marković, D. ,
“Scalability and Design-space Analysis of A 1T-1MTJ Memory Cell For STT-RAMs”,
IEEE Transactions on Electron Devices, vol. 59, no. 4, pp. 878–887, 2012.
(1.1 MB) Y. Wei, Zhou, J. , Wang, Y. , Liu, Y. , Liu, Q. , Luo, J. , Wang, C. , Ren, F. , and Huang, L. ,
“A Review of Algorithm & Hardware Design for AI-Based Biomedical Applications”,
IEEE Transactions on Biomedical Circuits and Systems , vol. 14, no. 2, pp. 145-163, 2020.
(2.08 MB) F. Ren, Park, H. , Yang, C. - K. K. , and Marković, D. ,
“Reference Calibration of Body-voltage Sensing Circuit for High-speed STT-RAMs”,
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 11, pp. 2932–2939, 2013.
(1.78 MB) A. Putnam, Caulfield, A. M. , Chung, E. S. , Chiou, D. , Constantinides, K. , Demme, J. , Esmaeilzadeh, H. , Fowers, J. , Gopal, G. Prashanth, Gray, J. , and , ,
“A reconfigurable fabric for accelerating large-scale datacenter services”,
IEEE Micro, vol. 35, pp. 10–22, 2015.
J. Zhao, Westerham, M. , Lakatos-Toth, M. , Zhang, Z. , Moskoff, A. , and Ren, F. ,
“OpenICS: Open Image Compressive Sensing Toolbox and Benchmark”,
Software Impacts, vol. 9, 2021.
(362.26 KB) C. Hegde, Sankaranarayanan, A. C. , Yin, W. , and Baraniuk, R. G. ,
“NuMax: A convex approach for learning near-isometric linear embeddings”,
IEEE Transactions on Signal Processing, vol. 63, pp. 6109–6121, 2015.
M. Mehdi Ghahremanpour, Arab, S. Shahriar, Biookaghazadeh, S. , Zhang, J. , and van der Spoel, D. ,
“MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program”,
Bioinformatics, vol. 30, pp. 439–441, 2013.
(192.44 KB) J. Martin Duarte-Carvajalino and Sapiro, G. ,
“Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization”,
IEEE Transactions on Image Processing, vol. 18, pp. 1395–1408, 2009.
E. J. Candès and Wakin, M. B. ,
“An introduction to compressive sampling”,
IEEE signal processing magazine, vol. 25, pp. 21–30, 2008.
E. J. Candès and Wakin, M. B. ,
“An introduction to compressive sampling”,
IEEE signal processing magazine, vol. 25, pp. 21–30, 2008.
M. A. Davenport, Duarte, M. F. , Eldar, Y. C. , and Kutyniok, G. ,
“Introduction to compressed sensing”,
preprint, vol. 93, p. 2, 2011.
M. A. Davenport, Duarte, M. F. , Eldar, Y. C. , and Kutyniok, G. ,
“Introduction to compressed sensing”,
preprint, vol. 93, p. 2, 2011.
J. Li, Liang, J. , Li, L. , Ren, F. , Hu, W. , Li, J. , Qi, S. , and Pei, Q. ,
“Healable Capacitive Touch Screen Sensors Based on Transparent Composite Electrodes Comprising Silver Nanowires and a Furan/Maleimide Diels-Alder Cycloaddition Polymer”,
ACS Nano, vol. 8, no. 12, pp. 12874–12882, 2014.
(6.99 MB) M. A. T. Figueiredo, Nowak, R. D. , and Wright, S. J. ,
“Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems”,
IEEE Journal of selected topics in signal processing, vol. 1, pp. 586–597, 2007.
Y. I. Li, Liu, Z. , Xu, K. , Yu, H. , and Ren, F. ,
“A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural Networks”,
ACM Journal on Emerging Technologies in Computing (JETC) - Special Issue on Frontiers of Hardware and Algorithms for On-chip Learning, vol. 14, no. 2, p. 18.16, 2018.
(1.92 MB) H. Palangi, Ward, R. K. , and Deng, L. ,
“Distributed Compressive Sensing: A Deep Learning Approach.”,
IEEE Trans. Signal Processing, vol. 64, pp. 4504–4518, 2016.
J. Schmidhuber,
“Deep learning in neural networks: An overview”,
Neural networks, vol. 61, pp. 85–117, 2015.
Y. Feng, Yang, F. , Zhou, X. , Guo, Y. , Tang, F. , Ren, F. , Guo, J. , and Ji, S. ,
“A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound Based Prostate Cancer Detection”,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 6, pp. 1794-1801, 2019.
(1.73 MB) Y. LeCun, Bengio, Y. , and Hinton, G. ,
“Deep learning”,
Nature, vol. 521, pp. 436–444, 2015.
Y. Wang, Li, X. , Xu, K. , Ren, F. , and Yu, H. ,
“Data-Driven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal Acquisition by Compressive Sensing”,
IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 2, pp. 255-266, 2017.
(2.53 MB) S. Nam, Davies, M. E. , Elad, M. , and Gribonval, R. ,
“The cosparse analysis model and algorithms”,
Applied and Computational Harmonic Analysis, vol. 34, pp. 30–56, 2013.
D. Needell and Tropp, J. A. ,
“Cosamp: iterative signal recovery from incomplete and inaccurate samples”,
Communications of the ACM, vol. 53, pp. 93–100, 2010.
S. Qaisar, Bilal, R. Muhammad, Iqbal, W. , Naureen, M. , and Lee, S. ,
“Compressive sensing: From theory to applications, a survey”,
Journal of Communications and networks, vol. 15, pp. 443–456, 2013.
G. Chen and Needell, D. ,
“Compressed sensing and dictionary learning”,
Preprint, vol. 106, 2015.
Y. I. Li, Zhang, S. , Zhou, X. , and Ren, F. ,
“Build a Compact Binary Neural Network through Bit-level Sensitivity and Data Pruning”,
Neurocomputing, vol. 398, pp. 45-54, 2020.
(1.91 MB) M. Kim and Smaragdis, P. ,
“Bitwise neural networks”,
arXiv preprint arXiv:1601.06071, 2016.
M. Courbariaux, Hubara, I. , Soudry, D. , El-Yaniv, R. , and Bengio, Y. ,
“Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1”,
arXiv preprint arXiv:1602.02830, 2016.