
Hardware-friendly Deep Learning for Edge Computing

by

Yixing Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved December 2020 by the
Graduate Supervisory Committee:

Fengbo Ren, Chair
Sarma Vrudhula

Jae-sun Seo
Baoxin Li

ARIZONA STATE UNIVERSITY

May 2021

ABSTRACT

The Internet-of-Things (IoT) boosts the vast amount of streaming data. However,

even considering the growth of the cloud computing infrastructure, IoT devices will

generate two orders of magnitude more than the capacity that centralized data center

servers can process or store. This trend inevitability calls for the need for offloading

IoT data processing to a decentralized edge computing infrastructure. On the other

hand, deep-learning-based applications gain great progress by taking advantage of

heavy centralized computing resources for training large models to fit increasingly

complicated tasks. Even though large-scale deep learning models perform well in

terms of accuracy, their high computational complexity makes it impossible to offload

them onto edge devices for real-time inference and timely response.

To enable timely IoT services on edge devices, this dissertation addresses the

challenge from two perspectives. On the hardware side, a new field-programmable

gate array (FPGA)-based framework for binary neural network and an application-

specific integrated circuit (ASIC) accelerator for natural scene text interpretation are

proposed, with the awareness of the computing resources and power constraint on

edge. On the algorithm side, this work presents both the methodology of building

more compact models and finding better computation-accuracy trade-off for existing

models.

i

ACKNOWLEDGMENTS

First and foremost, I am greatly indebted to my advisor, Dr. Fengbo Ren for his

consistent guidance, encouragement, inspiration, and support. Dr. Ren motivated

me to set a high standard from the beginning of my Ph.D. study, and he also tirelessly

shaped me into both an independent researcher and a team player. I have benefited

tremendously from his knowledge and experience, and his philosophies about work

and life. I would also like to thank my committee members Dr. Sarma Vrudhula,

Dr. Jae-sun Seo and Dr. Baoxin Li for their fruitful discussion and guidance over the

years.

I would like to thank all PSCLab members: Kai Xu, Michael Riera, Zhikang

Zhang, Saman Biookaghazadeh, Erfan B. Tavakoli, Masudul Quraishi and Yuhao

Wang for brainstorming together, and all the fun we have had in our lab. Special

thanks to my amazing co-authors – Zichuan Liu, Wenye Liu and Shuai Zhang for cross-

country collaborations. I would like to thanks the researchers whoever took a time to

give me some comments on my works. Those critical feedback and peer recognition

have motivated me to become a better researcher in this Ironman Triathlon.

During the half a year I spent in the industry, I had wonderful intern experience

with the guidance of my mentor Dr. Ming Kai Hsu at Cadence Design Systems,

and Dr. Xin Lu and Ms. Laurie Byrum at Adobe. I was lucky to work on projects

that were highly related to my research background, which allowed me to see the

excitement of productizing the research ideas.

I would like to thank my friends for their support throughout the intensive job

hunting season during the unforeseen circumstances in current pandemic, especially

the accompany and emotional support of my boyfriend, Kun Zhang. Finally, I would

like to thank my beloved parents for their understanding and support during the

entire Ph.D. journey. This dissertation is dedicated to all of them.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 4

2.1 Neural Network Compression . 4

2.1.1 Reduce Precision . 4

2.1.2 Reduce Connection . 6

2.1.3 Other Methods . 7

2.1.4 Comparison . 7

2.2 Hardware Acceleration on the Edge Server . 8

2.2.1 FPGA Inference Framework for Deep Learning 9

2.2.2 ASIC Accelerator for Deep Learning . 10

3 FPGA INFERENCE FRAMEWORK FOR BINARY CONVOLUTION

NEURAL NETWORKS. 11

3.1 Algorithm Reformulation for Efficient FPGA Mapping 11

3.1.1 Binary-encoded Convolution . 11

3.1.2 Comparator-based Normalization . 12

3.1.3 BCNN Model Overview . 13

3.2 Architecture Design and Optimization . 14

3.2.1 Architecture Overview . 14

3.2.2 Architectural Parameters . 15

3.2.3 Throughput Modeling and Optimization 16

3.3 FPGA Implementation . 17

iii

CHAPTER Page

3.3.1 PE Unit . 17

3.3.2 Computing Kernels . 18

3.3.3 Memory . 19

3.4 Experimental Evaluation . 19

3.4.1 Design Environment . 20

3.4.2 FPGA Implementation Results . 20

3.4.3 FPGA-based Versus GPU-based BCNN 22

3.5 Summary . 24

4 ASIC ACCELERATORS FOR BINARY CONVOLUTION NEURAL

NETWORKS . 26

4.1 Preliminary . 26

4.1.1 Convolutional Encoder-decoder Network (CEDNet) 29

4.1.2 Binary Convolutional Encoder-decoder Network (B-CEDNet) 32

4.2 Architecture Design . 34

4.2.1 Processing Elements . 35

4.2.2 Memory Design . 37

4.3 Dataflow Control . 38

4.4 Experimental Evaluation . 40

4.5 Summary . 45

5 COMPRESS BINARY NEURAL NETWORKS VIA SENSITIVITY ANAL-

YSIS . 46

5.1 BNN Reconstruction . 46

5.1.1 Bit-sliced Binarized Input . 46

5.1.2 Non-binary First Layer . 47

iv

CHAPTER Page

5.1.3 Binary Constrained Training . 49

5.2 Sensitivity Analysis . 49

5.3 Rebuild a Compact BNN . 51

5.4 Experimental Evaluation . 51

5.4.1 Experiment on CIFAR-10. 53

5.4.2 Experiment on Other Datasets . 58

5.4.3 Runtime Evaluation . 60

5.5 Summary . 61

6 PRUNING BINARY NEURAL NETWORK VIA WEIGHT FLIPPING

FREQUENCY . 62

6.1 Preliminary . 62

6.1.1 Iterative Pruning . 62

6.1.2 Optimization-based Pruning . 63

6.2 Methodology . 64

6.2.1 Weight Flip Frequency . 64

6.2.2 BNN Compression Flow . 66

6.3 Experimental Evaluation . 68

6.4 Summary . 70

7 LIGHT-WEIGHT OBJECT DETECTION NETWORKS. 71

7.1 Preliminary . 72

7.2 Architecture Design . 75

7.2.1 Light-weight Block . 75

7.2.2 Partially Shared Weights . 76

7.3 Experimental Evaluation . 77

v

CHAPTER Page

7.3.1 Experimental Setup . 77

7.3.2 Performance on COCO Dataset . 78

7.4 Summary . 81

8 CONCLUSION AND FUTURE WORK . 83

REFERENCES . 86

vi

LIST OF TABLES

Table Page

3.1 Optimized Parameters for Each Layer . 20

3.2 FPGA Resource Utilization Summary . 20

3.3 Experiment Results and Comparison . 21

4.1 Memory Summary (Unit:KB) . 40

4.2 Chip Summary . 40

4.3 Experiment Results and Comparison . 43

5.1 Performance Comparison with Different Input Format and 1st Layer

Configuration . 54

5.2 Sensitivity Analysis of Single Bit Slice in Each Channel with Random

Noise Injected . 55

5.3 Sensitivity Analysis of 1-N th Multiple Bit Slices in Each Channel with

Random Noise Injected . 56

5.4 Performance of CBNNs on CIFAR-10. 58

5.5 Performance Results of CBNNs on SVHN, Chars47k, GTSRB and Im-

ageNet Datasets . 59

6.1 The Layer-wise BNN-pruning Results of the Binarized NIN at Each

Iteration. 68

6.2 The Layer-wise BNN-pruning Results of the Binarized AlexNet at Each

Iteration. 69

6.3 Experiment Results of BNN Pruning. 69

7.1 Comparison Between Different Light-weight Block. 79

7.2 Configurations of Different Light-weight (LW) RetinaNet. 79

7.3 Resource Utilization of Intel Arria 10 GX 1150 FPGA Implementation. 79

7.4 Comparison of Original RetinaNet and Proposed Light-weight RetinaNet. 80

vii

LIST OF FIGURES

Figure Page

2.1 Resource Consumption of W (10,10)×A(10,10) Multiplication on a Xilinx

Virtex-7 FPGA for Different Architecture . 8

3.1 Pseudo Code of the BCNN Algorithm. 13

3.2 Overview of the Proposed Accelerator Architecture for BCNN. 14

3.3 Processing Element (PE). 18

3.4 The Architecture of Computing Kernels and Their FPGA Mapping

Schemes. 18

3.5 Throughput and Energy Efficiency Comparison with GPU Implemen-

tations. 23

4.1 Natural Scene Text Interpretation System. 27

4.2 Comparison of Different Levels of Natural Scene Text Processing. 28

4.3 Architecture of the Convolutional Encoder-decoder Network (CEDNet). 30

4.4 Pooling and Up-pooling Layers. 30

4.5 Architecture of the Binary Convolutional Encoder-decoder Network

(B-CEDNet). 32

4.6 Architecture of the Binary Convolutional Encoder-decoder Network

(B-CEDNet). 35

4.7 Processing Elements (PEs). 36

4.8 BinConv Kernel and Conv Kernel. 36

4.9 Data Flow Control Between Blocks. 39

4.10 The Layout of NSTI Accelerator. 41

4.11 Visualization of NSTI Accelerator Output . 42

5.1 Conversion from Fixed-point Input to Bit-sliced Binary Input 47

viii

Figure Page

5.2 Corresponding Relationship Between Input Bit Slices and Non-binary

First Layer . 48

5.3 Histogram of Distributions of Weight Magnitude Associated with Dif-

ferent Input Bits . 48

5.4 Sensitivity Analysis of the Reconstructed BNN with Distorted Input. . . 50

5.5 Visualization of a Horse Image in CIFAR-10 with Different Bit-level

Distortion in Spatial Domain and Frequency Domain. 54

5.6 Error Rate of Randomizing One or Multiple Bit Slices in Sensitivity

Analysis. 57

5.7 Runtime Comparison of Different Network Compression Technique. 60

6.1 The Overview of the General Pruning Flow. 63

6.2 Accuracy Comparison for Randomizing Different Groups of Weights. . . 64

6.3 The Overview of the BNN Pruning Flow. 66

6.4 The Illustration of Training Interval for f Analysis. 66

7.1 RetinaNet (ResNet50-FPN-800x800) Network Architecture. 73

7.2 The FLOPs and Memory (Parameter) Distribution of RetinaNet Across

Different Blocks. 74

7.3 Light-weight Blocks for Detection Backend. 75

7.4 Fully and Partially Shared Weights for Detection Backend. 76

7.5 FLOPs and mAP Trade-off for Input Image Size Scaling Versus the

Proposed Method. 81

ix

Chapter 1

INTRODUCTION

The Internet-of-Things (IoT) boosts the vast amount of streaming data. An estima-

tion of 50 billion IoT devices will be deployed by 2020 (Computing (2016)). In the

cloud-based computing scenario, all the data generated by these devices will be stored

and processed by the centralized data center servers. However, even considering the

growth of the cloud computing infrastructure, IoT devices will generate two orders

of magnitude more than the capacity that centralized data center servers can store

or process. In addition, due to the latency caused by long server-to-client distance or

the network congestion, the recent centralized computing infrastructure is not suit-

able for any time-sensitive applications. This trend inevitability calls for the need for

offloading the IoT data processing to a decentralized edge computing infrastructure

(Biookaghazadeh et al. (2018)). On the other side, deep-learning-based applications

gain great progress by taking advantage of heavy centralized computing resources

for training large models to fit increasingly complicated tasks (LeCun et al. (2015)).

Even though large-scale deep learning-based models perform well in terms of accu-

racy, their high computational complexity makes it impossible to offload them onto

edge devices or fall for real-time inference and timely response.

To enable more IoT services on edge devices, this work contributes from two

critical angles. On the edge device side, a new FPGA-based framework for binary

neural network and an ASIC accelerator for natural scene text interpretation are

proposed, with the awareness of the computing resources and power constraint on

edge. On the algorithm side, this work presents both the methodology of building

more compact models and finding better computation-accuracy trade-off points for

1

existing models. The majority of this dissertation has appeared in the following

publications.

• Li, Yixing, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. “A GPU-outperforming

FPGA accelerator architecture for binary convolutional neural networks.” ACM

Journal on Emerging Technologies in Computing Systems (JETC) 14, no. 2

(2018): 1-16.

• Li, Yixing, Zichuan Liu, Wenye Liu, Yu Jiang, Yongliang Wang, Wang Ling

Goh, Hao Yu, and Fengbo Ren. “A 34-FPS 698-GOP/s/W binarized deep

neural network-based natural scene text interpretation accelerator for mobile

edge computing.” IEEE Transactions on Industrial Electronics 66, no. 9 (2018):

7407-7416.

• Li, Yixing, Shuai Zhang, Xichuan Zhou, and Fengbo Ren. “Build a compact

binary neural network through bit-level sensitivity and data pruning.” Neuro-

computing (2020).

• Li, Yixing, Akshay Dua, and Fengbo Ren. “Light-Weight RetinaNet for Object

Detection on Edge Devices.” In 2020 IEEE 6th World Forum on Internet of

Things (WF-IoT), pp. 1-6. IEEE, 2020.

• Li, Yixing, and Fengbo Ren. “BNN Pruning: Pruning Binary Neural Network

Guided by Weight Flipping Frequency.” In 2020 21st International Symposium

on Quality Electronic Design (ISQED), pp. 306-311. IEEE, 2020.

This dissertation starts with systematic reviews of the related work of edge device

designs and algorithm designs in Chapter 2. The works presented in Chapter 3 and 4

are related to edge computing hardware design. Chapter 3 presents an FPGA-based

2

inference framework, while Chapter 4 presents ASIC accelerators for binary convo-

lution neural networks. Chapter 5-7 are focusing algorithm designs. Chapter 5 and

Chapter 6 illustrate two different solutions for compressing binary neural networks.

Chapter 7 demonstrates an application-specific solution of light-weight object detec-

tion networks for edge computing. Finally, Chapter 8 summarizes the dissertation,

and the future works are discussed.

3

Chapter 2

RELATED WORK

In this chapter, related works for accelerating neural networks on edge are sum-

marized into two categories: neural network compression algorithms and hardware

acceleration on the edge server.

2.1 Neural Network Compression

When referring to hardware-friendly oriented designs, it is not fair to only empha-

size compressing the network size. Other than that, the computational complexity is

also essential. This chapter first discusses and evaluates the related work for network

compression by emphasizing both factors. Then a simple benchmark study is pre-

sented to help the readers better understand the computational complexity in terms

of hardware resource utilization of the existing work. It can reveal why the binary

neural network (BNN) is a more superior solution to be deployed on the edge devices.

2.1.1 Reduce Precision

BinaryConnect (Courbariaux et al. (2015)) is a study in the early stage of explor-

ing the binarized weight neural network. In the BinaryConnect network, the weights

are binary values while the activations are still non-binary. Arbitrary value multiplies

+1/-1 is equivalent to a conditional bitwise NOR operation. Hence, the convolution

operations can be decomposed into conditional bitwise NOR operations and accu-

mulation. It is a big step moving from full-precision multiplication to much simpler

bitwise operations.

BinaryNet (Hubara et al. (2016)) is the first one that builds a network with both

4

binary weights and activations. The convolution operation has been further simplified

as bitwise XNOR (Exclusive-NOR) and bit count operations. The hardware resource

cost is minimized for GPU, FPGA and ASIC implementation. For GPU implemen-

tation, a 32-bit bitwise XNOR can be implemented in a single clock cycle with one

CUDA core. For FPGA and ASIC implementation, there is no need to use DSP

(Digital Signal Processor) resources anymore, which is relatively costly. Simple logic

elements – LUTs (Look Up Tables) can be used to map bitwise XNOR and bit count

operations, which makes it easy to map highly parallel computing engines to achieve

high throughput and low latency.

XNOR-Net (Rastegari et al. (2016)) also builds the network based on binary

weights and activations. However, it introduces a filter of full-precision scaling factors

in each convolutional layer to ensure a better accuracy rate. Additional non-binary

convolution operations are needed in each convolutional layer, which cost extra pro-

cessing time and computing resources.

TernaryNet (Zhu et al. (2016)) holds ternary (-1, 0, +1) weights for its network.

By increasing the precision level of the weights, it enhances the accuracy rate. Since

ternary weights have to be encoded in 2 bits, the computational complexity will at

least double, compared with BinaryNet.

LQ-Net (Zhang et al. (2018a)) studies the bit-width and accuracy tradeoff be-

tween different low-precision configurations. The lower bound of weight and acti-

vation precision are constrained to 1 bit and 2 bits, respectively. The bit-width of

weight/activation in LQ-Net can be configured to 1/2, 2/2, 3/3, 2/32, 3/32 or 32/32.

In this paper, LQ-Net only refers to its most compact version – 1-bit weight and

2-bit activation configuration. Its computational complexity will be the closest one

to BinaryNet, while the accuracy is improved, especially for the large networks.

5

2.1.2 Reduce Connection

Network pruning (Han et al. (2015)) is revealed as the most popular technique

for compressing pre-trained full-precision or reduced-precision CNNs (weights of the

reduced-precision CNN are usually in the range of 8 bit - 16 bit (Suda et al. (2016)).

It compresses the network by pruning out the useless weights, which gains speedup

mainly by reducing the network size. Unlike all the other technique mentioned above,

neither the weights nor activations of a pruned network are binary or ternary. Still,

the computation complexity of the full-precision or reduced-precision multiply-add

operation is much higher than that of the BNN. Overall, different kinds of pruning

methods can be categorized as magnitude-based and optimization-based pruning.

For magnitude-based pruning (Han et al. (2015)), the key idea is to prune out

the weights that have small numerical value, which contribute less to compute the

output. In the case of BNN, the weights are constrained to +1/-1, so there is no

relative small value weights which can’t be applied with magnitude analysis. For

optimization-based solution (Carreira-Perpinán and Idelbayev (2018)), the pruned

network can be resulted in a non-structured or structured way. For non-structured

ones, the prunable weights randomly distributes in the 4-D weight space. In a full-

precision or reduced-precision CNN, the indexes of non-structured prunable weights

can be stored in separated masking arrays. The inference speed can be benefited

from skipping the computation of masked weights. However, in the case of BNN,

since the weights are already in 1-bit data format, the masking array will introduce

quite a lot overhead in memory footprint. Besides, additional logic for skipping the

computation of masked weights would ruin the pattern of highly paralleled XNOR

computations in BNN. The only possible way which can improve runtime performance

is to apply optimization-based structured pruning (Zhang et al. (2018b); Luo et al.

6

(2017)) on BNN, but no existing work has done any related study. Usually pruning

can be applied with 4-8 bit low-precision networks. However, how much redundancy

the BNN still has is still unknown, and no existing solution has been proved to work

effectively on such compact BNN.

2.1.3 Other Methods

Singular Value Decomposition (SVD) is one method that has been applied to BNN

to compress its weight matrices (Lin et al. (2017a)). The basic idea is to decompose a

matrix into lower rank matrices without losing much of the important data. SVD is

able to provide high compression ratio for high rank matrices. However, for low-rank

binary weight matrices of BNN, SVD can only bring 17% memory saving according

to Lin et al. (2017a).

2.1.4 Comparison

A W(10,10) × A(10,10) matrix multiplication is implemented on a Xilinx Virtex-7

FPGA board for analyzing the computational complexity of the different architecture

that mentioned above. The precision of elements in W and A are the same as the

precision of weights and activations in each architecture. The matrix multiplication is

fully mapped onto the FPGA. In other words, the proposed design doesn’t reuse any

hardware resource. So the resource utilization is a good reflection of computational

complexity. Since 16 bits are enough to maintain the same accuracy rate as the full

precision network (Suda et al. (2016)), the precision of any full precision weights or

activations are set to be 16 bits. For the pruned network, 84% of the elements in W

of the pruned network are set to zeros for a fair comparison. (Since pruned network

can get up to 13x reduction (Han et al. (2015)) while BNN can get 32x, the size

of the pruned network is 32/13=2.5x larger. With 16-bit weights, the total number

7

0%

3%

5%

3%

10%

4%

7%

35%

0%

0%

0%

0%

Pruned network

TernaryNet

XNOR-Net

BinaryNet

BinaryConnect

LQ-Net

DSP LUTS

Figure 2.1: Resource Consumption of W (10,10) × A(10,10) Multiplication on a Xilinx
Virtex-7 FPGA for Different Architecture

of non-zero weights of the pruned network is 2.5/16=16% of that of the binarized

weight cases.) For LQ-Net (Zhang et al. (2018a)), this work only refer to its most

compact configuration in this paper, which has 1-bit weights and 2-bit activations.

As shown in Fig. 2.1, BinaryNet and LQ-Net apparently consumes the least amount

of hardware resource among all these architecture.

In summary, for all the methods mentioned above, pruning can be categorized

as connection reduction, while the rest can be categorized as precision reduction.

However, both kinds of methods cannot be applied to the BNN. Regarding to the

incompatibility of pruning, detailed explanation has been made in Chapter 2.2. For

precision reduction, BNN has already reached the lower bound.

2.2 Hardware Acceleration on the Edge Server

The FPGAs, GPUs, ASIC and other special-purpose chips are designed to help

resource-constrained, x86-based devices process large volumes of image or audio data

through one layer after another of analytic criteria so the app can correctly calculate

and weight the value of each.

For ASIC-based edge accelerators, Apple, Qualcomm and Huawei have all an-

8

nounced that on-device neural processing engine, aiming at partially moving their

AI processing module on device. For GPU-based edge accelerators, Nvidia’s Jetson

series are designed for power-efficient edge computing with 7.5W power budget.

In this chapter, the discussion is only regarding the related work of FPGA- and

ASIC-based accelerators, which generally are one order of magnitude more energy

efficient then the GPU ones.

2.2.1 FPGA Inference Framework for Deep Learning

Thus far, GPU-based CNN accelerator is still dominant due to its improved

throughput over CPUs. However, the high power consumption of GPUs has brought

up cooling concerns in data center computing. On the other hand, FPGA-based

CNN accelerator has been widely investigated due to its energy efficiency benefits.

As the system throughput is proportional to the computing parallelism and operating

frequency, the theoretical throughput of GPU-based and FPGA-based CNN acceler-

ators can be estimated on the 1st order based on device specifications. A Titan X

GPU has 3,072 CUDA cores, while a Virtex-7 FPGA has 3,600 DSP48 slices. For

implementing a full-precision CNN, the computing parallelism of GPUs and FPGAs

can be approximately the same. But, GPUs offer 5-10x higher frequency. As a result,

FPGAs can hardly match up the throughput of GPUs for accelerating full-precision

CNNs. Differently, for a BCNN, the operations in the convolution layers become

bitwise XNORs and bit-count logic. A direct impact is that one can use LUTs in-

stead of DSP48 slices to implement the bitwise operations on an FPGA. Hundreds

of thousands of LUTs make it possible for a high-end FPGA to match up or surpass

the throughput of a GPU, even considering the bitwise operation capability of CUDA

cores. Moreover, FPGAs benefit from much higher energy efficiency, which makes it

a superior solution for accelerating BCNN in a data center setting. Early research

9

effort (Hubara et al. (2016)) shows that GPU can get 7x speedup using a binary ker-

nel for MNIST classification task on a binary multilayer perceptron (MLP). However,

there have been very few studies on exploring FPGA-based accelerator architecture

for binary neural networks.

2.2.2 ASIC Accelerator for Deep Learning

The architecture of ASIC accelerator for general NN acceleration is highly depends

on the numerical precision. For CNNs with 8-32 bits, the dominant solution is the

systolic array (Jouppi et al. (2017)). The layout pattern of processing elements (PEs)

is a regular 2-D grid, which alleviates the routing issue and results in relatively high

frequency range. For CNNs with lower numeral precision (1-3 bits), the most common

solution is to design several general PEs for different kinds of layers. In the case of

an ASIC accelerator for BNNs, it has three kinds of computing kernels in hardware:

floating-point convolution, binary convolution and fully-connected kernels (Zhao et al.

(2017)). Since it can only maps a single layer of the BNN at a time, only one kind

of computing kernels is active at a time. Such a time multiplexing scheme limits the

system throughput due to the low hardware utilization.

Beside the ASICs that designed for general CNN acceleration, there are also de-

signs aiming at specific tasks, e.g. pedestrian detection and etc. In general, different

tasks are associated with different NN architecture. A dedicated ASIC design can

be tailored for a specific NN architecture and its dataflow. Another key point is, the

exciting general NN ASIC accelerator may not support its architecture or dataflow

control. A dedicated is needed in this case.

10

Chapter 3

FPGA INFERENCE FRAMEWORK FOR BINARY CONVOLUTION NEURAL

NETWORKS

FPGA-based hardware accelerators for convolutional neural networks (CNNs) have

obtained great attention due to their higher energy efficiency than GPUs. However,

it is challenging for FPGA-based solutions to achieve a higher throughput than GPU

counterparts. In this chapter, an optimized FPGA accelerator architecture tailored

for bitwise convolution and normalization that features massive spatial parallelism

with deep pipeline stages (Li et al. (2018)) are proposed. A key advantage of the

FPGA accelerator is that its performance is insensitive to data batch size, while the

performance of GPU acceleration varies largely depending on the batch size of the

data.

3.1 Algorithm Reformulation for Efficient FPGA Mapping

3.1.1 Binary-encoded Convolution

When training the BCNN in (Hubara et al. (2016)), the weights and activations

are constrained to either +1 or -1. For efficient FPGA mapping, +1/-1s is encoded

as 1/0s in the proposed design. In this way, it only takes 1 bit to store a weight or

an activation value. Moreover, the convolution operation in layer l is simplified into

an XNOR dot product of the input feature map abl−1 the weight abl , given as

yl(x, y, z) = XnorDotProduct(abl−1, a
b
l) (3.1)

Equation (3.1) sums up 1s and 0s, which is different from the original BCNN that

sums up -1s and +1s. The relation between the original output feature map yl0 and

11

the revised yl in the proposed design can be expressed as

yl0 = 1× yl + (−1)× (cnuml − yl) = 2yl − cnuml, (3.2)

where is the total number of bitwise XNOR operations needed for each yl0. The dif-

ference between yl0 and yl compensated in the normalization module in the proposed

design.

Note that all the layers take the binary feature map of its previous layer as the

input except for the first layer. In the proposed design, the input data is rescaled

within the range of [-31,31] and use a 6-bit fixed-point data format, which helps

to reduce the resource utilization of non-binary operations at the cost of a limited

classification accuracy loss of <0.5%.

Since the input image size is 3×32×32, the computational complexity of the first

layer is not a dominating factor. The fixed-point dot product of a 6-bit signed input

a0 and a 2-bit signed weight w1 is denoted as

yl = FpDotProduct(a0, wl) (3.3)

3.1.2 Comparator-based Normalization

The parameters subject to training can be considered as constant values in the

inference stage. Therefore, the binarization in (4), the normalization function in (2)

and the value compensation in (6) are combined into a modified sign function defined

as

NormBinarize(yl, cl) =

1, yl ≥ cl

0, yl < cl

(3.4)

where cl is a constant threshold derived by cl = (cnuml +µ−β
√
σ2 + ε/γ)× 0.5, and

it is rounded to the nearest integer for hardware implementation. The impact of the

12

Figure 3.1: Pseudo Code of the BCNN Algorithm.

proposed reformulation on hardware implementation is that both the reformulated

normalization and binarization functions can be efficiently implemented as a single

LUT-based comparator. In addition, one only needs to store one threshold value cl

for each output value rather than a set of training parameters µ, σ2 β and γ.

3.1.3 BCNN Model Overview

The inference flow for the reformulated BCNN algorithm is summarized in Fig.

3.1. The convolution in the 1st layer involves fixed-point dot product operations

(FpDot

Product), Differently, bitwise XNOR dot product operations (XnorDotProduct) are

used in all the other layers. Max-pooling (MP) applied in layers 2, 4 and 6. Normal-

ization and binarization are combined as a single function (NormBinarize) which

is applied in all layers except for the output layer. The output layer ends with the

normalization function Norm for classification.

13

Figure 3.2: Overview of the Proposed Accelerator Architecture for BCNN.

3.2 Architecture Design and Optimization

3.2.1 Architecture Overview

The binary nature of the BCNN enables us to map all the weights, feature maps,

and reference values (for normalization) onto the on-chip block RAMs (BRAMs) in

a single FPGA. This eliminates any DRAM access latency and dramatically reduces

the energy consumption of the system comparing to the existing work relying on off-

chip storage (Zhang et al. (2015); Farabet et al. (2011); Qiu et al. (2016); Zhao et al.

(2017)).

Fig. 3.2 shows the overall architecture of the proposed BCNN accelerator. The bi-

nary convolutional kernel in each layer is followed by a NormBinarize (NB) kernel with

or without a Max-pooling (MP) kernel. All of the kernels are highly parallelized with

an optimized number of processing elements (PEs) and operate in a single instruction

multiple data (SIMD) fashion. A streaming architecture is enabled by using double-

buffering-based memory channels to handle the data flow between adjacent layers.

Each PE in the binary convolutional kernel handles an XNOR dot product opera-

tion, which is the core operation in both convolutional and fully-connected layers.

14

The PEs interface with the BRAMs in parallel to read the weights concurrently.

3.2.2 Architectural Parameters

(I) Loop Unrolling. Note that the three nested loops that accumulate the

XNOR output values along the three dimensions of a convolutional filter has loop-

carried data dependency. Unrolling data-dependent loops is the same as architectural

unfolding, which will improve throughput by increasing the level of temporal paral-

lelism. This trades off more hardware resource with improved computing parallelism.

The unfolding factor is a critical architectural parameter in the proposed design,

denoted as UF . UF has a maximum value of WID ×HEI ×DEP in each layer.

Differently, the calculation of the pixel values along the three dimensions of an out-

put feature map has no loop-carried data dependency. Unrolling independent loops

is equivalent to creating spatial parallelism in the architecture to improve through-

put. In the proposed design, the independent loops are fully unrolled to maximize

the throughput. The unrolling factor of independent loops is denoted as P . Maxi-

mizing P generates a massively parallelized PE array by utilizing the abundant LUT

resources on the FPGA.

(II) Pipelining. Loop pipelining is applied in the proposed architecture to further

enhance the temporal parallelism and maximize the system throughput. Note that

the queuing time to feed in the next data is the inversely proportional to throughput,

which is referred to as initial interval I in this chapter. If there is a loop existing

in the data path, the minimum initial interval will be limited by the loop latency of

the recursive architecture. With loop pipelining, the next data can be feed whenever

possible with the minimum initial interval. In the case of a fully pipelined implemen-

tation, new data comes in every clock cycle (l=1).

15

3.2.3 Throughput Modeling and Optimization

If only one XNOR operation and one accumulation are performed in each clock

cycle, the total execution time Cycleconv clock cycles of a convolutional layer can be

model as

Cycleconv = WID ×HEI ×DEP × FW × FH × FD (3.5)

where WID, HEI, and DEP denotes the width, height, and depth of a convolutional

filter, and FW , FH, and FD denotes the width, height and, depth of an output

feature map, respectively. When architectural unfolding is applied in performing the

XNOR dot product operation in each PE, will be divided by UF . Similarly, when

spatial parallelism is applied to create PE arrays for processing P output pixels in

parallel, Cycleconv will be further reduced by P times. The same PE array is reused

to calculate the output feature maps with pipelining applied, which contributes to

an I-cycle initial interval for the most inner loop. Thus, the throughput of the

convolutional kernel with architectural optimization can be formulated as

throughput = max(C1, C2, C3, ..., Ck). (3.6)

where freq is the system frequency. Note that throughputconv proportional to the

estimated cycle count Cycleest convolutional layer, defined as

Cycleest =
Cycleconv
UF × P

× I. (3.7)

In the proposed accelerator architecture, a double buffering scheme is used to further

enhance the spatial parallelism of the system as shown in Fig. 4. The computa-

tion of each layer is triggered at the same time and alternates between two phases.

Specifically, one channel of fmapL−1 is used as the input of the Lth layer while the

L − 1th layer is writing new outputs into the other fmapL−1 channel. When both

16

layers finish processing, the memory buffers swap, and the next processing phase is

triggered. Therefore, the overall system-level throughput can be formulated as

throughput =
max(C1, C2, C3, ..., Ck)

freq
, (3.8)

where CL is the execution time of the Lth architecture. CL can be either Cycleest

throughput modeling or Cycler evaluating real execution throughput. One should

note that the system throughput can be maximized with the optimal hardware uti-

lization when all the layers have equal execution time (C1 = C2 = C3 = ... = Ck). In

the case that the Lth layer has longer execution time than other layers, one can always

increase the parallelism of the Lth layer while decreasing that of other layers to gain

throughput with minimum overhead in resource usage. Since the convolutional layers

take up over 95% of the computation, only the optimization of convolutional layers

is emphasized in this chapter. The fully-connected layer can be easily optimized to

match up the system throughput using the same principle.

3.3 FPGA Implementation

In this chapter, it presents the strategy of mapping different computing units to

maximize the FPGA resource utilization.

3.3.1 PE Unit

The block diagram of a PE unit is shown in Fig. 3.3. A PE unit handles the

XNOR dot product operation of a weight vector and a feature map vector from the

previous layer. The vectors are fed into an array of 2-input XNOR gates followed by

a parallelized bit-count logic for accumulation. Since both the XNOR gates and the

bit-count logic take binary values as input, the PEs can be efficiently implemented

using the abundant LUT resources. This is the key to enabling massive computing

17

Figure 3.3: Processing Element (PE).

Figure 3.4: The Architecture of Computing Kernels and Their FPGA Mapping
Schemes.

parallelism on an FPGA. Note that the number of XNOR gates in each PE is the same

as the unfolding factor UF of the current layer. By accumulating the PE output, the

pixel value of an output feature map can be computed by the bit-count logic.

3.3.2 Computing Kernels

Fig. 3.4 shows the architecture of the convolutional kernel followed by the Max-

pooling and NormBinarize kernels. Each convolutional kernel has an array of PEs

implemented using LUTs followed by an array of accumulators implemented using

DSP48 slices. The number of PEs and DSP slices is equal to the spatial parallelism

18

factor P . Each convolutional kernel thereby computes P pixel values of the output

feature map in parallel. Besides the weight arrays, only intermediate results of the

accumulator outputs (bit-count results) within a single feature map are stored in

BRAMs. Feature maps are mapped onto distributed RAMs.

For the convolutional layers 1, 3 and 5 without max-pooling, the outputs of ac-

cumulators are directly connected to the NB kernels. The hardware kernel of fully-

connected layers is similar to Fig. 3.4. Note that the max-pooling is performed in

pipeline with the computation of feature maps in the proposed implementation.

3.3.3 Memory

To read and write a large number of bits in the same clock cycle, one has to

partition and reshape the memory arrays in the BCNN model. Partition essentially

breaks down a large data array into smaller ones to fit in multiple BRAMs for parallel

access. Reshaping basically redefines the depth and width of a single BRAM by

grouping multiple words into a wider one. In the proposed design, the weight and

fmap arrays are mapped onto BRAMs and distributed RAMs (registers), respectively.

Since the maximum word length of a BRAM in a Virtex-7 FPGA is limited to 32

bits, the weight array first was reshaped by 32 and then was partitioned into several

BRAMs to guarantee enough memory bandwidth for the required system throughput.

3.4 Experimental Evaluation

The proposed accelerator architecture is implemented for the BCNN in (Hubara

et al. (2016)) using the optimal architectural parameters shown in Table 3.1. UF

and P are optimized for making Cycleest layer approximately the same based on the

throughput model in Eq. 3.8. Each layer is also fully pipelined with an initial interval

of I = 1. Note that the operations along the FW and the FD dimensions are fully

19

Table 3.1: Optimized Parameters for Each Layer

Table 3.2: FPGA Resource Utilization Summary

unfolded for maximizing the throughput.

3.4.1 Design Environment

C language is used to describe the accelerator architecture. Vivado HLS is used

to produce the RTL codes. The Vivado Design Suite is used to map the design onto

a Xilinx Virtex-7 XC7VX690 FPGA. The execution time in terms of clock cycles is

reported by Vivado HLS and the system frequency is reported by Vivado Design Suite

after the implementation stage.

3.4.2 FPGA Implementation Results

As shown in Table 3.1, the real execution time Cycler the synthesis report for each

layer is well aligned with Cycleest by the proposed model in Eq. 3.7. The throughput

bottleneck is layer 6 in this case. Running at a system frequency of 90 MHz, the

FPGA-accelerated BCNN achieves an image processing throughput of 6,218 frames

per second (FPS), which is the highest throughput for the same dataset reported by

far. The top-1 accuracy rate is 87.8%, which is only 0.3% lower compared to the

software model in Theano.

20

Table 3.3: Experiment Results and Comparison

Farabet Virtex 6 200 16 147 10 14.7 0.98 -
Zhang Virtex 7 100 32 float 62 18.7 3.3 0.14 -
Qiu Zynq-7000 150 16 137 9.6 14.3 0.75 224.6
Suda Stratix-V 120 8 ~ 16 117.8 25.8 4.56 0.45 262.9
Ma Arria-10 150 8 ~ 16 645.25 21.2 30 4.01 47.94
Zhang Intel Xeon 200 32 float 123.48 13.18 9.37 0.62 263.27
Zhang Arria-10 385 fixed 1790 37.46 47.78 4.19 35.5
Zhao Zynq-7000 143 1 ~ 2 207.8 4.7 44 4.43 5.94
Andri YodaNN* - 1 525 0.06 8600 - -

Jouppi Google
TPU*

700 8 92000 40 2300 - -

This work Virtex 7 90 1 7663 8.2 935 22.4 0.99

Clock
(MHz)

Performance
Density

(GOPS/kLUT)

Latency
(ms)Device Bit-width GOPS Power

(W)

Energy
Efficiency
(GOPS/W)

To reduce runtime, a bottom-up design strategy was adopted by synthesizing the

proposed design layer by layer in Vivado HLS and implementing the entire system in

Vivado Design Suite. The overhead introduced by initialization is negligible. Table 4

shows the resource utilization summary for the entire BCNN implementation. LUTs

are used for mapping all the computing kernels, including binary convolution, MP and

NB kernels. Feature maps of convolutional layers are mapped onto distributed RAMs

result in additional LUT consumption. The BRAM usage is mostly consumed by all

the weight matrices. Flip-flops are used for storing feature maps and constructing a

deep pipeline. Around 30% of the DSP slices are used by the 1st layer to perform

fixed-point multiplication. For the rest of convolutional layers, DSP slices are used

for accumulating PE outputs as shown in Fig. 3.4.

Existing FPGA-based CNN implementations are compared in Table 3.3. To min-

imize the impact of different FPGA models on throughput, energy efficiency and per-

formance density defined as throughput normalized to resource utilization are used

as the performance metrics for comparison. Compared with the FPGA implementa-

tions of floating-point or reduced-precision CNNs, BCNN implementation of this work

21

achieves 4-124× higher GOPS, 20-283× better energy efficiency and 5-160× better

performance density. Even compared with the BCNN implementation in (Zhao et al.

(2017)), this work achieves 5× better performance density in terms of GOPS/kLUT.

The work in (Zhao et al. (2017)) implements three kinds of computing kernels in

hardware: floating-point convolution, binary convolution and fully-connected ker-

nels. Since this reference work maps a single layer of the BCNN at a time, only one

kind of computing kernels is active at a time. Such a time multiplexing scheme limits

the system throughput due to the low hardware utilization. In the proposed design,

all the layers of the BCNN are mapped into a streaming architecture with optimized

architectural parameters, and the data is flowing throughout the entire architecture

in a deep pipeline. Therefore, the kernels are constantly active, and the utilization

rate of the hardware resources is high. In addition, (Zhao et al. (2017)) consumes

extra power for loading the weights from off-chip memory layer by layer in addition

to the FPGA power reported. On the contrary, there is no such overhead in the

proposed architecture since the network is fully mapped and trained parameters are

stored on chip.

3.4.3 FPGA-based Versus GPU-based BCNN

Fig. 3.5 compares the performance of the BCNN accelerated by a Titan X GPU

and the proposed FPGA-based design. For GPU acceleration, the baseline kernel

is designed for floating-point computation, and the XNOR kernel is optimized for

bitwise operations (Hubara et al. (2016)). In the XNOR kernel, it concatenates 32 1-

bit values into a 32-bit value. At the peak performance, each CUDA core can execute

32 bitwise operations per clock cycle. That is the reason why BCNN can also gain

remarkable speedup on a GPU when using the XNOR kernel for compilation.

GPU acceleration is apparently sensitive to the size of workload (batch size here).

22

Figure 3.5: Throughput and Energy Efficiency Comparison with GPU Implemen-
tations.

One of the keys to achieving high performance in GPU computing is to hide the long

latency of functional units by data-level interleaving especially when there are loop-

carried data dependency existed in the algorithm. Only when the workload is large

enough, a GPU is able to maintain high thread-level parallelism to achieve a high

throughput. Differently, the FPGA-based solution is invariant to the batch size of

data. Experiment results show that the proposed design significantly outperforms the

GPU acceleration using the baseline kernel in terms of both throughput and energy

efficiency. Even compared with the GPU acceleration using the XNOR kernel, which

is reported as the best GPU-based CNN performance by far, the proposed design

achieves a 75× better energy efficiency and an 8.3× better throughput for processing

data in a small batch size of 16. For processing data in a large batch size of 512 (the

maximum size that fit into the GPU memory), the proposed design can match the

throughput of the GPU acceleration with a 9.5× better energy efficiency.

Therefore, the FPGA-based BCNN solution is a clearly better choice for accel-

erating the data center applications that process online individual requests in small

batch sizes. In a recent study conducted by Baidu, a dominant Internet company in

23

China with 600 million active users, it is reported that the typical on-line prediction

workload in terms of batch size is around 8 to 16 (Ouyang et al. (2014)). Such small

workload is not enough for GPU to achieve its peak throughput performance. Thus,

the FPGA-based solution is more superior in handling this kind of requests from

individual users.

For processing static data in large batch sizes, the proposed solution is on a par

with a Titan X GPU in terms of throughput while delivering much higher energy effi-

ciency. This renders the FPGA-based solution a better choice for energy constrained

applications, such as mobile-based advanced driver assistance systems (ADAS). In

the ADAS application, a large batch of data needs to be processed for monitoring

real-time road condition. In this case, both throughput and energy efficiency are

essential and the FPGA-based solution can be deployed.

3.5 Summary

In this chapter, an optimized accelerator architecture tailored for BCNNs is pro-

posed. It is demonstrated for the 1st time that the FPGA-based BCNN solution

can greatly outperform a Titan X GPU in terms of both throughput and energy

efficiency for processing accurate image classification tasks. The proposed BCNN

accelerator running on a Virtex-7 FPGA is 8.3x faster and 75x more energy-efficient

than a Titan X GPU for processing individual online requests in small batch sizes.

For processing static data in large batch sizes, the proposed solution is on a par with

a Titan X GPU in terms of throughput while delivering 9.5x higher energy efficiency.

Thus, BCNNs are ideal for efficient hardware implementations on FPGAs regardless

of the size of workload. The bitwise operations in BCNNs allow for the efficient hard-

ware mapping of convolution kernels using LUTs, which is the key to enable massive

computing parallelism on an FPGA. Applying the optimal levels of architectural un-

24

folding, parallelism, and pipelining based on the proposed throughput model is the

key to maximizing the system throughput. Building memory channels across layers

with data-flow control is the key to constructing a streaming architecture to further

improve the throughput.

25

Chapter 4

ASIC ACCELERATORS FOR BINARY CONVOLUTION NEURAL NETWORKS

The scene text interpretation is a critical part of the natural scene interpretation.

Currently, most of the existing work is based on high-end graphics processing units

(GPUs) implementation, which is commonly used on the server side. However, in

Internet of Things (IoT) application scenarios, the communication overhead from the

edge device to the server is quite large, which sometimes even dominates the total

processing time. Hence, the edge computing oriented design is needed to solve this

problem. In this chapter, an architectural design and implementation of a natural

scene text interpretation (NSTI) accelerator, which can classify and localize the text

region on pixel-level efficiently in real-time on edge devices are proposed.

To target the real-time and low-latency processing, the binary convolutional en-

coder–decoder network is adopted as the core architecture to enable massive paral-

lelism due to its binary feature. Massively parallelized computations and a highly

pipelined data flow control enhance its latency and throughput performance. In ad-

dition, all the binarized intermediate results and parameters are stored on chip to

eliminate the power consumption and latency overhead of the off-chip communica-

tion.

4.1 Preliminary

Conventionally, text recognition has been vastly investigated for document images

(LeCun et al. (1998)). However, in the natural scene, the background is much more

complicated than that of the document images, which makes the scene text recogni-

tion become a more challenging task. With the recent development in neural networks

26

Original

image

Cropped

image

Predicted

pixelwise

map

Reflection in

original

image

NSTI engine

library

There is a library by

the sidewalk ...

Figure 4.1: Natural Scene Text Interpretation System.

and deep learning (Rahmani et al. (2016, 2018)), the accuracy of natural scene text

recognition has outperformed the traditional feature selection methods by using fea-

tures selected automatically The related work can be categorized as character-level

based and word-level based solutions. The character-level based solutions (Bissacco

et al. (2013); Wang et al. (2012)) detect and recognize character one at a time. Its

front-end is a sliding window approach for character proposals, which makes it suffer

from the processing time. The word-level based solution (Jaderberg et al. (2014))

requests large fully-connected layer to generate the probability for thousands of word

classes, which place a heavy burden on memory access. The shared limitation of

either character-level (Bissacco et al. (2013); Wang et al. (2012)) or word-level based

(Jaderberg et al. (2014)) solutions is that their architecture is not capable of achieving

a low-latency performance. In (Liu et al. (2018a)), it performs one-shot text inter-

pretation with a binary convolutional encoder-decoder network (B-CEDNet). Since

most of the computation in B-CEDNet are bitwise operations, it opens a new oppor-

27

(a)

(b)

(c)

(d)

(e)

Figure 4.2: Comparison of Different Levels of Natural Scene Text Processing.

tunity for hardware acceleration. However, all the previous work mentioned above is

implemented by high-end GPUs (such as Nvidia Titan X). The power-hungry high-

end GPUs are not able to be deployed on energy-constrained mobile devices. If

GPUs are deployed on the server side, the communication overhead from a client to

a cloud server is quite large, which sometimes even dominates the total processing

time. However, long latency is not tolerant in augmented reality (AR) applications. If

one chooses to use low-power oriented GPUs, such as Nvidia Tegra X1, on the power

constrained edge devices, it will get 20× performance (in terms of Flops) degrada-

tion compared with the Nvidia Titan X GPU (Inference (2015)). Considering the

performance degradation factor, the frame rate in (Liu et al. (2018a)) will drop from

200 fps to 20 fps when it is mapped onto a Tegra X1. As such, it cannot maintain a

real-time throughput on a lower-power GPU. In addition, the power consumption of a

Tegra X1 is 6W (Inference (2015)), which is still too power hungry for a smartphone.

Hence, an edge-computing oriented design is needed to solve this problem.

To target a low-latency and real-time processor for energy-efficient natural scene

text processing on edge devices, this work propose an ASIC B-CEDNet-based natu-

ral scene text interpretation (NSTI) accelerator. As shown in Fig. 4.1, the processor

takes the cropped natural scene image as the input and outputs a map of pixelwise

28

classification results with the same size as input. In comparison with generating a

bounding box for each character or the entire word (as shown in Fig. 4.2(b) and

(c)), the pixelwise classification output (in Fig. 4.2(a)) shows morphological bound-

ary, which is much more user-friendly in AR applications. Compared with binary

classification results for the text and non-text regions in Fig. 4.2(d), the proposed

processor can identify different characters in a one-shot prediction. In addition, with

the localization, morphological and categorized information, it largely alleviates the

workload for the back-end word-level prediction and even scene description as shown

in Fig. 4.1. The bitwise operation dominated computation in B-CEDNet enables

massive parallelism of multiply-add operations (MACs) in the proposed processor.

The binarized parameters and intermediate results are fully mapped on chip to elimi-

nate the communication cost (regarding power consumption) instead of loading them

from off-chip memory.

In this chapter, the first session discusses the CEDNet architecture for pixelwise

interpretation from the algorithm perspective. Then, the second session introduces

its binary counterpart, the B-CEDNet architecture. It emphasizes the differences

between two architectures and explains how its binary feature brings new opportunity

for the hardware acceleration.

4.1.1 Convolutional Encoder-decoder Network (CEDNet)

Conventionally convolutional neural networks (CNNs) are used for image clas-

sification tasks (LeCun et al. (2015); Krizhevsky et al. (2012); Goodfellow et al.

(2016)). Generally, they are composed of convolutional layers, pooling layers, and

fully-connected layers [16]. To perform image classification, the network only gen-

erates one prediction for the entire image. Therefore, CNNs cannot be directly de-

ployed for the pixelwise interpretation of images. In Fig. 4.3, the convolutional

29

32x128x1

Input Image

 Feature Maps

(Full Precision)

Conv BNPL ReLu Conv BNUnpooling ReLu

Encoder Decoder

32x128x27

Salience Map

0

0.5

1

0

0.5

0

0.5

1

Softmax

Encoder block
Decoder block

Figure 4.3: Architecture of the Convolutional Encoder-decoder Network (CEDNet).

9 7

81

2 17

7

6 25

14

106

4

12 11

19 17 19

7 25

16 15

4 19

16

4

11

15

Pooling index

Max-pooling Up-pooling

0 0 0

0 0 0

0 0

0 0

0

0

(Encoder) (Decoder)

Figure 4.4: Pooling and Up-pooling Layers.

encoder-decoder network (CEDNet) is proposed in (Badrinarayanan et al. (2017)) for

the multi-class pixelwise classification. A CEDNet takes the scene text images as

input. The body of the network can be divided into the encoder part and decoder

part. The output of the CEDNet is a salience map S ∈ RWI×HI×C , which contains

the probability information of each pixel over C categories (including one background

class), where C is 27 (characters are case insensitive). The encoder part is a stack of

encoder blocks, while the decoder is a stack of decoder blocks. Each encoder block

contains a convolutional (Conv) layer, a pooling layer (PL), a batch normalization

(BN) layer and a rectified linear unit (ReLU) layer. The convolutional layer applies

convolutional operations on input feature map ak−1 ∈ RWk−1×Hk−1×Dk−1 with train-

able weight matrix wk ∈ Rwk×hk×Dk×Dk , where the subscript k indicates the kth block.

30

The convolutional operations can be formulated as

sk(x, y, z) =

wk∑
i=1

hk∑
j=1

Dk−1∑
l=1

wk(i, j, l, z)

∗ak−1(i+ x− 1, j + y − 1, l), (4.1)

where sk ∈ RWk×Hk×Dk is the output of kth Conv layer. Equation (4.1) shows that

the computation of sk along three dimensions has no data dependence, which can be

highly paralleled in an ASIC implementation. The Conv layer is intended to extract

high-level features, which are critical for the pixelwise classification. In the PL layer,

it pools out the critical information and eliminates the non-critical one. The PL

layer can perform either max pooling or average pooling (LeCun et al. (2015)). A

max-pooling layer is shown in Fig. 4, it pools out the maximum value in each 2× 2

window. By introducing the pooling layer, the size of the feature map is shrinking

as the network goes deeper. The BN layer is mainly used for accelerating training

process (Ioffe and Szegedy (2015)). So in the inference stage, the BN layer is also

applied to match the training process forming a stable distribution of the activations

(ak). The output of kth BN layer is represented as follows:

ak(x, y, z) =
sk(x, y, z)− µ(x, y, z)√

σ2(x, y, z) + ε
γ(x, y, z)

+β(x, y, z), (4.2)

where µ and σ2 is the mean and variance over the mini-batch training data, while γ

and β are trainable scaling factors. The activation function is a nonlinear transfor-

mation. The most commonly used activation function (LeCun et al. (2015)), ReLU

function is represented as

ak(x, y, z) =

0, ak(x, y, z) ≤ 0

ak(x, y, z), ak(x, y, z) ≥ 0.

(4.3)

31

32x128x1

Input Image

BinConv BNPooling Binrz

Adaptor Binary Encoder Binary Decoder

BNConv Binrz

32x128x27

Salience Map

0

0.5

1

0

0.5

0

0.5

1

Softmax

Block-0 Block-1

Block-2 Block-3 Block-4 Block-5 Block-6

Block-7

Block-8
Block-9 Block-10

BinConv BNUnpool

-ing

Binrz

Figure 4.5: Architecture of the Binary Convolutional Encoder-decoder Network (B-
CEDNet).

The entire encoder part is similar to a CNN without fully-connected layers.

Since the output salience map is desired to be the same size as the input, in the

decoder part, each decoder block substitutes the pooling layer with the up-pooling

layer. As shown in Fig. 4.4, the up-pooling (UPL) layer pools back the maximum

value to the same index in corresponding max-pooling layer. As such, the output

salience map can represent the same localized information as the input. In order to

predict the pixelwise character appearance probability, the output block replaces the

ReLU function with softmax function. As shown in the rightmost part of Fig. 4.3, it

only plots the salient map slices for character “A”, “D” and “S”. The lighter color

code means higher confidence level and vice versa. The CEDNet architecture can

enable highly parallelized MAC computing inside every encoder or decoder block. It

eliminates both the run-time bottle stage in sliding window-based proposal and the

computation-intensive fully-connected layer.

4.1.2 Binary Convolutional Encoder-decoder Network (B-CEDNet)

Even though the mobile devices are getting more and more computing power, it

is still hard to deploy full-precision CNNs for efficient computing on mobile edge de-

vices. Since the CNN architecture is proved to have huge redundancy (Cheng et al.

32

(2015)), different methods (Courbariaux et al. (2015); Hubara et al. (2016); Rastegari

et al. (2016); Han et al. (2015); Jacob et al. (2018)) have been proposed to reduce

the computation complexity and/or alleviate the memory access issues. Some ap-

proaches (Han et al. (2015)) focus on minimizing total number of parameters, which

mainly alleviate the memory access issues. While other approaches (Courbariaux

et al. (2015); Hubara et al. (2016); Rastegari et al. (2016); Jacob et al. (2018)) re-

duce the precision of weights and activations, which can both reduce the computation

complexity and alleviate the memory access issues. Among these approaches, bina-

rization (Hubara et al. (2016); Rastegari et al. (2016); Lin et al. (2017d)) can push the

weights and activations to be represented in binary format wb
k ∈ {0, 1}Wk×Hk×Dk×Dk ,

and abk−1 ∈ {0, 1}Wk−1×Hk−1×Dk−1 . It can achieve up to 32× memory saving and

converting the convolution operations to bitwise XNOR operations for much more

efficient computing. It has been proved in (Liu et al. (2018a)), binarization approach

can be adopted in CEDNet to build a binary convolutional encoder-decoder network

(B-CEDNet as shown in Fig. 4.5 for pixelwise text classification with merely no

accuracy drop.

In the B-CEDNet, it replaces the Conv layer and ReLU layer with the binary

convolutional layer (BinConv layer) and Binarization layer (Binrz layer), respectively.

The equation for the BinConv layer and Binrz layer is shown in (4.4) and (4.5),

respectively.

sk(x, y, z) =

wk∑
i=1

hk∑
j=1

Dk−1∑
l=1

∼ (wb
k(i, j, l, z)

⊕abk−1(i+ x− 1, j + y − 1, l)) (4.4)

33

abk(x, y, z) =

−1, ak(x, y, z) ≤ 0

+1, ak(x, y, z) ≥ 0

(4.5)

The most costly computation, full-precision multiplication, is now converted into

the hardware-friendly bitwise XNOR operation. For GPU implementation, one MAC

module can process 32-bit bitwise XNOR instead of one 32-bit multiply-add operation.

For FPGA implementation, the BinConv layer is no longer needed to be implemented

in DSP slices. Massive LUTs can be used for efficiently implementing bitwise oper-

ations. For ASIC implementation, it is flexible enough to build tailored computing

units for a BinConv layer with tree-like bitwise XNOR and bit-count logics. With

simplified basic computing units, it is able to map massive computing units to target

a high system throughput.

B-CEDNet has brought new opportunity in energy-efficient edge-computing appli-

cations. Compared with power-hungry GPU-based solutions and overhead of routing

in FPGA-based solutions, a tailored ASIC solution for B-CEDNet can be the most

energy efficient solution with high throughput performance. It is able to satisfy the

need for real-time and low-latency processing in power-constrained edge-computing

device for scene text interpretation.

4.2 Architecture Design

Most existing ASIC/FPGA-based CNN accelerators are only compatible with en-

coder blocks (down-sampling trend) for image classification, recognition and detection

tasks (Moons and Verhelst (2016); Tu et al. (2017)). While some optimized de-

signs for decoder blocks (up-sampling trend) for super resolution applications (Zhang

et al. (2017)). The proposed architecture is customized for the convolutional encoder-

decoder network. The Fig. 4.6 shows the ASIC architecture of the proposed Natural

34

C
o
n

tr
o
ll

er

O
ff

-c
h

ip
 D

R
A

M

Input

Buffer

Output

Buffer

p_indexk

B
lo

ck
-0

B
lo

ck
-1

B
lo

ck
-2

B
lo

ck
-3

B
lo

ck
-4

B
lo

ck
-5

B
lo

ck
-6

B
lo

ck
-7

B
lo

ck
-8

B
lo

ck
-9

Block k

ak
b

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE

MEM

PE

wk
b

wk
b wk

b

wk
b

wk
b wk

b

wk
b

wk
b wk

b

ak-1
b

ak
b

B
lo

ck
-1

0

RAM

RAM

RAM

Figure 4.6: Architecture of the Binary Convolutional Encoder-decoder Network (B-
CEDNet).

Scene Text Interpretation (NSTI) accelerator. The NSTI accelerator takes the scene

text image from the off-chip DRAM as the input. Then it is processed through com-

puting blocks in a streaming manner. The computing blocks, Block-0 to Block-10,

are corresponding to 11 blocks in Fig. 4.5. Each computing block is built upon a

processing element (PE) array, as shown in the right half of the Fig. 4.6. Each PE

performs the operations of convolution, max-pooling/un-pooling, activation function

and batch normalization. The spatial parallelism of the NSTI accelerator is reflected

on the block level, PE level and sub-PE level. The temporal parallelism is reflected in

highly pipelined steaming data flow. Both massive spatial parallelism and temporal

parallelism enable high throughput performance of the proposed NSTI accelerator.

Reduction in computation complexity to bit-level operations benefits in power saving.

Storing all the weights (wb) and intermediate results (ab) on chip to minimize off-chip

communication gives extra credits to energy saving.

4.2.1 Processing Elements

Each computing block in Fig. 4.6 performs the computation corresponding to Fig.

4.5. Therefore, Block-1 to Block-4 and Block-5 to Block-8 are identical, respectively.

Although the functions vary among these blocks, the structure inside each block is the

35

PE - Encoder

Bin-

Conv

Bin-

Conv

Bin-

Conv

Bin-

Conv

akak-1
b

wk
b

PL

ak

p_index

BN-

Binrzbk

ak
b

PE - Decoder

Bin-

Conv

ak-1
b

wk
b

UPL

ak

p_index

BN-

Binrz

bk

ak
b

ak
b

(a) A PE in the Encoder (b) A PE in the Decoder

Figure 4.7: Processing Elements (PEs).

wk
b

ak-1
b

sk

BinConv Kernel

wk

ak-1

Conv Kernel

(full precision)

sk

(a) BinConv kernel in the encoder and the decoder (b) Conv kernel in the adaptor

Figure 4.8: BinConv Kernel and Conv Kernel.

same as shown in Fig. 4.6. In each block, PE arrays take the feature map abk−1 from

previous layers and weight wb
k values from its local memory (ROM) as the inputs, and

output the feature map abk of the current layer. All the PEs in the same block work

simultaneously. The differences among these blocks exist in their processing elements

(PEs).

The PEs of encoder and decoder are shown in Fig. 4.7. The PE of the encoder in

Fig. 4.7(a) has 4 BinConv kernels, a PL kernel and a BN-Binrz kernel, while the PE

of the decoder in Fig. 4.7(b) has a BinConv kernel, an UPL (un-pooling) kernel and

a BN-Binrz kernel. For the convenience of the ASIC implementation, the UPL layer

in block k + 1 is grouped with block k for building the computing block. Therefore,

36

in each decoder PE, it starts with a BinConv kernel and ends with an UPL kernel. If

BinConv kernels in an encoder PE are substituted with Conv kernels, it becomes a

PE for the adapter. BinConv kernels in Fig. 4.7(a) and Conv kernels of the adapter

are both implemented in a tree-like structure as shown in Fig. 4.8. A Conv kernel has

a floating-point operation on each node, while a BinConv kernel performs bit-level

XNOR and bit-count. They both are implemented by pure combinational logics. In

each Conv/BinConv kernel, it computes one sk(x, y, z) at a time, that is to say, the

parallelism factor in terms of number of operations is wk×hk×Dk. The computation

of the BN and Binrz layer can be simplified as a threshold function (Li et al. (2017)),

which can be implemented by a single 2-input comparator, denoted as BN-Binrz

kernel in Fig. 4.7. The PL kernel is implemented with a 4-input comparator, which

also encodes the index of the maximum value in pooling region. The pooled out

value and its index are stored in buffer. Then feed them into the UPL kernel in its

symmetric decoder block as shown in Fig. 4.6. The DEMUX in the UPL kernel of

Fig. 4.7(b) writes back the (pooled maximum) value with the index information to

the right location in the RAM. The up-pooled data in the buffer serves as the input

of next decoder block.

4.2.2 Memory Design

In DL-based ASIC designs (Chen et al. (2017); Desoli et al. (2017); Bong et al.

(2017)), the communication to the off-chip DRAM is very power-intensive. The binary

feature of B-CEDNet enable us to store all the weights (wb) and intermediate results

(ab) on chip to minimize off-chip communication for energy saving. As shown in 4.1,

the first and second column indicates the memory size of weight values in the non-

binary case (CEDNet) and binary case (B-CEDNet), respectively. The total memory

size of weights in the B-CEDNet has 30× saving, comparing with the non-binary one.

37

The ideal memory saving results from converting full-precision network (32 bits) to

binarized-weight network should be 32×. Since the first layer still has non-binary

weights, the real compression ratio is a little bit less than the ideal case. 2,144 KB

distributed ROMs are built to store all weight values, as shown in Fig. 4.6. In

a PE array, each PE has its local ROM attached. This can alleviate the routing

issue in the bottom-up design flow. There are total 423 KB binarized intermediate

results ab between blocks. Since the size of ab is relatively small, synthesized shift

registers are used to buffer ab. This can enable global voltage scaling with the core

computing part to get a more energy efficient point in chip testing stage. 172 KB

Block SRAMs (hard macros) are used between the encoder block (Block-1, -2 and

-3) and its symmetric decoder block (Block-5, -6 and -7) to buffer the pooling index.

For the innermost block, Block-4, the outputs of its max-pooling layer is directly

up-pooled (up-sampled). As such, there is no need to store the pooling index of block

4.

4.3 Dataflow Control

In Fig. 4.9, it shows the data flow control across different blocks. Since all the

layers share the same depth, B-CEDNet is simplified to a 2-D version in the following

discussion. In a BinConv layer, the filter size of the weight matrix is 3×3 and the

stride is equal to 1. While in a PL layer, the filter size is 2×2 and the stride is equal

to 2. In an encoder block, since a BinConv kernel and its corresponding PL kernel

are grouped into one PE (as shown in Fig. 4.7(a)), the size of sliding window should

be 4×4. In the decoder case, the size of the sliding window is 3×3 with only one

BinConv PE.

The color code is in Fig. 4.9 indicates the location of the sliding window regarding

to the clock cycle. Each sliding window is located by the pixel of its upper-left corner.

38

Encoder

k-2

Encoder

k-1

Encoder

k

Hk-1

Wk-1

TR +4TF +8TF +12TF

Decoder

k+1

Decoder

k+2

Decoder

k+3

cycle

Row = 2i+1

Col = 2j+1

Row = 2i+1

Col = 2j
Row = 2i

PE active PE idle PE active

Figure 4.9: Data Flow Control Between Blocks.

In the first pixel of each row, the reference time is defined as TR, where R is the row

index. The same feature map region (where the red sliding window is) is reused at

time TF and process it with different weight values. In order to maximize the data

reuse, (F − 1)×Wk−1 + F pixels are buffered at a time, where the size of the sliding

window is F × F . The buffered data in Fig. 4.9 are in relatively high brightness.

Feature map reuse helps to reduce the frequency of fetching new (feature map) data,

which will result in energy saving. After TF cycles, the window slides to the right

with the stride equal to 1. All the pixels with non-white color codes indicate the PEs

are active. In the active mode, the PEs read in new data from the previous block,

execute the computation and write the processed data to the next block. Since PEs

are implemented by combinational logics, once the buffered data is ready, the current

block produces valid results simultaneously. All the other pixels in the white color

code indicate the PEs are idle, where the PEs only reads new data into the buffer.

39

Table 4.1: Memory Summary (Unit:KB)

Block index 0 1 2 3 4 5 6 7 8 9 10 Total
w 22 2008 9008 9008 9008 9008 9008 9008 9008 9008 54 66126
wb 22 71 289 289 289 289 289 289 289 289 9 2144
ab <<1 50 16 8 4 1 8 16 16 16 N/A 423

p_index N/A 131 33 8 N/A N/A N/A N/A N/A N/A N/A 172

Table 4.2: Chip Summary

Symbol Quantity
Technology 40nm 1p10m CMOS
Transistor flavor HVT 92.8%, SVT 7.2%
Gate count 2811 kGates
I/Os Digital: 13/27, Power: 33
Core VDD 0.9 V
I/O VDD 1.8 V
Core size 12.7 mm2

As shown in Fig. 4.9, the PEs are active in 1/2, 1/4 and 1/8 of total time in the

encoder block k − 2, k − 1 and k, respectively. In order to maximize the utilization

(active time ratio) of PEs, it is designed to have 4×, 2× and 1× number of PEs,

accordingly. Similarly, in the decoder block k + 1, k + 2 and k + 3, number of PEs

increases as 1×, 2× and 4×. Therefore, the proposed data flow control makes all the

computing blocks work in a highly pipelined fashion, which enhances the throughput

performance of the NSTI accelerator.

4.4 Experimental Evaluation

The configuration of the B-CEDNet is the same as (Liu et al. (2018a)). The chip

summary is shown in Table 4.2. The NSTI accelerator is implemented in a 40nm

1p10m process using a standard-cell-based design flow. The RTL code is synthesized

in Synopsys Design Compiler (DC). To achieve the target throughput, a clock period

of 33.33 ns (30 MHz) evaluated at the worst-case process, voltage, and temperature

(PVT) corner is targeted throughout the chip implementation. Taking into account

40

Block1

Block 0

Block 3 Block 4 &5 Block 6

Block 7Block 8

Block 9 Block 10

Block 2

5.17 mm

2
.7

0
 m

m

Figure 4.10: The Layout of NSTI Accelerator.

the overhead to be introduced by the subsequent physical design, a 40% timing slack

is used during the synthesis. Specifically, the NSTI accelerator is synthesized with a

target clock frequency of 30/(1-40%) = 50 MHz. To reduce leakage power, the NSTI

accelerator is first synthesized using high-threshold (HVT) standard cells only. Then,

standard-threshold (SVT) standard cells are selectively inserted into the critical paths

for timing improvement. This is carried out by switching on the leakage optimization

tool in DC. Overall, the chip occupies a core area of 12.7 mm2 with an aspect ratio

of 0.52 and integrates 2811 kGates. The layout of the accelerator is shown in Fig.

4.10. The computing blocks and the buffers for intermediate results are colored in

red. The pooling indexes (shown as RAM in Fig. 4.6) have consumed a memory size

of 172 KB. To reduce area cost, RAMs are realized by dual-port SRAM hard macros,

which are in blue. The 2,144 KB local ROMs for weights are distributed in each

block, colored in yellow. For the leakage reduction purpose, HVT devices are used

in 92.8% of the logic cells. The chip has 13 digital inputs, 27 digital outputs, and

33 power pads supply core and I/O power domain. The I/O domain has a constant

supply voltage of 1.8 V, and the logic and memory domain both have a normal supply

voltage of 0.9 V. The post-layout simulation is performed to verify the functionality.

As shown in Fig. 4.11, the first row is the input images of the NSTI accelerator.

The accelerator takes the cropped text region and outputs the prediction of each

41

(a)

(b)

Image

Sailence map

Prediction

Image

Sailence map

Prediction

Figure 4.11: Visualization of NSTI Accelerator Output

pixel as shown the third row. In the second row, it merges the 3-D salience map into

a 2-D salience map, showing the confidence level of each pixel to the ground true

class. In Fig. 4.11(a), it shows some good prediction examples with high confidence

level and clean prediction boundary. In Fig. 4.11(b), some bad predictions with low

confidence level are shown, which have uneven illumination or low contrast input

images. By evaluating the pixelwise classification accuracy, the NSTI accelerator

achieves an accuracy of 90% and 91% testing on two public datasets, ICDAR-03 and

ICDAR-13, respectively.

The implementation results are summarized in Table 4.3. In this highly paralleled

architecture, it is able to map 46 PEs, which contains 193 MMACs (Mega multiply-

add operations) in total onto this chip. The total number of operations (MAC op-

eration is counted as 2 operations) in B-CEDNet is 39 G. The NSTI accelerator can

work at a frame rate of 34 fps (1,326 GOP/s) with the peak energy efficiency of 7825

GOP/s/W and the real energy efficiency of 698 GOP/s/W. The total power of the

NSTI accelerator is 1.9 W with the core consuming 0.8 W. The dynamic power is

estimated based upon simulation waveform of the test cases.

The first two columns in Table 4.3 compares exactly the same architecture (B-

CEDNet) by GPU (Liu et al. (2018a)) and the proposed ASIC implementation. It

should be noted that the GPU-based implementation for B-CEDNet (binary) already

delivered 8× better throughput than that of the CEDNet (non-binary) (Liu et al.

42

Table 4.3: Experiment Results and Comparison

This work Liu Andri1* Andri2* Pham* Chen* Desoli*

ASIC GPU ASIC ASIC ASIC ASIC ASIC
Yes Yes Yes Yes No No No
40 28 65 65 45 65 28
0.9 N/A 0.6 1.2 1 0.82-1.17 0.58-1.10
1.9 80 N/A N/A 0.49 0.16-0.33 0.02-0.09
30 1000 400 N/A 400 100-250 200-1175
34 200 N/A 707 N/A 57 41
40 5 39 N/A N/A 70 24

39 G 39 G 1.2 G 1.2 G N/A 2.7 G 1.3 G
Peak 14,868 N/A N/A N/A 360 68 473
Real 1,326 7,800 31 853 331 37 55

12.7 601 2.16 MGE 2.16 MGE 14.06 7.53 50.4

893 N/A 37 GOP/s/MGE 1043 GOP/s/MGE 32 9 294

Peak 7825 N/A N/A N/A 741 414 3064

Real 698 97 40950 24844 681 112-228 N/A

* Technology scaling to 40 nm (for all the reference with process and core VDD specified):

 Delay~1/S, Area~1/S , Power~1/U2, where S=L/40nm, U=VDD/0.9V

Area efficiency
(GOP/s/mm2)
Energy

efficiency
(GOP/s/W)

Freq (MHz)
Frame rate (fps)

Latency (ms)
Num. of OP

Throughput
(GOP/s)

Area (mm2)

ASIC/GPU
Binary

Process (nm)
Core VDD (V)

Power (W)

(2018a)). Compared with its optimal GPU-based implementation counterpart (Liu

et al. (2018a)), this work provides 7× better energy efficiency while still maintaining a

real-time frame rate with less than 2 W power consumption. Therefore, the proposed

accelerator can enable real-time scene text interpretation on the power-constrained

mobile devices.

This work is also compared with other ASIC designs for convolutional neural

network acceleration (CNN). For a fair comparison, we use the technology scaling

rules proposed in (Stillmaker and Baas (2017)) to scale all those reference with process

and core VDD specified (marked with * in Table 4.3). All of (Chen et al. (2017); Andri

et al. (2018); Pham et al. (2012); Desoli et al. (2017)) are general CNN accelerators

rather than task-specific ones. These general CNN accelerators are not compatible

with the encoder-decoder architecture, which cannot be used to accelerate B-CEDNet.

43

Reference (Andri et al. (2018)) is built upon the binary weight CNN, while (Chen

et al. (2017); Pham et al. (2012); Desoli et al. (2017)) are built upon fixed-point

CNNs. Compared with the throughput-optimal test set in (Andri et al. (2018)),

the proposed accelerator achieve 1.5× better throughput in terms of GOP/s. (Since

the total number of operations in different network vary a lot, GOP/s is a better

reflection of throughput rather than the frame rate.) Compared with fixed-point

CNN ASIC designs (Chen et al. (2017); Pham et al. (2012); Desoli et al. (2017)), the

proposed accelerator can delivery 4×-36× better throughput. In terms of the latency,

even if the number of operations of the proposed network is 14×-32× larger than

(Andri et al. (2018)1) and (Rahmani et al. (2018)), the proposed accelerator achieves

the best latency among them. Only when compared with (Desoli et al. (2017)),

its latency is 1.7× better than this work, due to 30× less number of operations in

its network. Among all these ASIC designs, the proposed accelerator is the only

one that can process the B-CEDNet with 39 Giga operations in a real-time manner

and low latency of 40 ms. Binary feature of B-CEDNet enable us to map 46 PEs

containing 193 MMACs for massive spatial parallelism. Highly pipelined data flow

control enable more temporal parallelism. Both spatial and temporal parallelism

contribute to optimize the throughput and latency in the proposed design. The

energy efficiency gap between this work and (Andri et al. (2018)2) can be explained

by following points. First, a trade-off is made for a better throughput, since the

primary task is to guarantee a real-time throughput. Second, (Andri et al. (2018))

has designed customized on-chip memory for a low-power design. Additionally, (Andri

et al. (2018)) stores the intermediate results (between blocks/layers) and parameters

in off-chip DRAM, which are excluded in power consumption reports. The power

consumption is under consideration for the entire application rather than just for

the computation core. Reduction in computation complexity to bit-level operations

44

benefits in power saving. Store all the weights and intermediate results on chip

eliminating off-chip communication for the sake of extending battery life.

4.5 Summary

This chapter presents an ASIC accelerator for real-time and low-latency natural

scene text interpretation on power-constrained mobile devices. The NSTI accelerator

takes the cropped scene text image as input and output a salience map for pixelwise

classification result. To target a real-time throughput and low latency, a B-CEDNet

is adopted as the core architecture to enable massive spatial parallelism. A highly

pipelined data flow control is applied to enable temporal parallelism. Moreover, all

the binarized intermediate results and parameters are stored on chip to eliminate

the power consumption and latency overhead of off-chip commutation. This NSTI

accelerator is implemented in a 40nm CMOS technology, which can process 128×32

scene text images at 34 fps with an latency of 40 ms for pixelwise interpretation with

accuracy no less than 90%. Its real energy-efficiency is 698 GOP/s/W and its peak

energy-efficiency can get up to 7825 GOP/s/W. In the IoT applications, the proposed

accelerator can be used in power-constrained edge devices to enable real-time augment

reality applications for natural scene understanding.

45

Chapter 5

COMPRESS BINARY NEURAL NETWORKS VIA SENSITIVITY ANALYSIS

Since CNNs are believed to have huge redundancy, a hypothesize was made that

the BNN also has redundancy and it is able to get a more compact BNN. To best

knowledge, there is only one related work pruned the first layer of a BNN with the

observation of barely any accuracy drop (Guo et al. (2018)). Since they only compress

the first layer, the impact on the entire network is fairly limited. On the contrary,

this chapter proposes the methodology of exploring the BNN redundancy across the

entire network.

5.1 BNN Reconstruction

The key concept is to explore the BNN redundancy across the entire network

by the bit-level analysis of the input data. The first thing needs to be done is to

reformat the input and modifying the first layer for the BNN reconstruction. Then,

it shows the redundancy exists in BNN through statistical analysis of the non-binary

first layer. At last, the training method is presented.

5.1.1 Bit-sliced Binarized Input

A single image in the dataset can be represented as D(W,H,C), where W is the

width, H is the height, and C is the number of channels, as shown in Fig. 5.1. The

raw data is usually stored in the format of a non-negative integer with the maximum

value of A. Then a lossless conversion from integer (fixed-point) to N -bit binary

46

1 1 0 1 1 0
0 1 0 1 1 1

0 1 1 1 1 0

0 0 0 1 1 0
0 0 1 1 0 1

72 01001000

118 01110110

194 11000010

W

H

C
W

H

C’=CxN
N bits

Figure 5.1: Conversion from Fixed-point Input to Bit-sliced Binary Input

format is defined as the int2b function.

Db
(W,H,C′) = int2b(D(W,H,C), N), (5.1)

where C ′ = C ×N and N = ceil(log2(A + 1)). After int2b conversion, each channel

of an image is expanded to N channels in binary format.

5.1.2 Non-binary First Layer

Experimental observation shows that the bit-sliced input has a negative impact on

the accuracy rate. There are two main reasons. Since the input data is in the bit-sliced

format, the data-preprocessing methods, e.g., mean removal, normalization, ZCA

whitening, cannot be applied here, which results in an accuracy drop. In addition,

compared with a standard first layer in BNN, the computational complexity drops,

which may hurt the accuracy rate. Therefore, the first layer is designed to have full-

precision float-point weights to keep the computational complexity of the first layer

the same as a standard first layer in BNN.

More importantly, non-binary first layer can help to analyze the importance level

of different input bit slices. More specifically, if the weights in first layer are closed

to zero, the corresponding input data points will not contribute to the computation

in the rest of layers. It can also be interpreted as these input features are filtered

out. As shown in Fig. 5.2, input bit slices and first layer weight slices have one-to-

47

Non-binary 1st layer

Figure 5.2: Corresponding Relationship Between Input Bit Slices and Non-binary
First Layer

Figure 5.3: Histogram of Distributions of Weight Magnitude Associated with Dif-
ferent Input Bits

one correlations. Thus, the weights associated with the N th input bits are grouped

separately for statistical analysis. In Fig. 5.3, it shows the histograms of first-layer

weight magnitude distributions associated with different input bit slices. For the

weights associated 1st-3rd bit slices, the weight magnitude is very closed to zero.

From the weights associated with 4th input bit slice, the weight magnitude spreads

out in a wider range. Therefore, it is hypothesized that the lower bits of input slices

can be redundant for the classification task.

Although switch the first layer to non-binary makes the network size increased,

the growth is somewhat limited. For example, in a 9-layer BinaryNet (Hubara et al.

48

(2016)), the size of the first layer is only 0.02% of the entire network. It has been

proved that, with 16-bit quantization of the weights, the NNs are still able to preserve

the accuracy (Suda et al. (2016)). With the bit-slice input, the network size will

slightly increase by 3%, which can be negligible.

With the bit-sliced input and non-binary first layer, the BNN model is recon-

structed and refer it as the reconstructed BNN. Although the computational com-

plexity is the same, the new structure helps to reduce the redundancy in BNN, which

will be elaborated in the following chapters.

5.1.3 Binary Constrained Training

For BinaryNet-based experiment, the training method is adopted from (Hubara

et al. (2016)). The objective function is shown in Eq. 5.2, where W1 represents

the weights in the non-binary first layer and Wl represents the weights in all the

other binary layers. The loss function L here is a hinge loss. In the training stage,

the full-precision reference weights Wl are used for the backward propagation, and.

the binarized weights W b
l = clip(Wl) (Hubara et al. (2016)) are used in the forward

propagation. As the authors propose in (Tang et al. (2017)), the reference weights in

the binary layers Wl(l ≥ 2) should be punished if they are not close to +1/-1. Also, a

L2 regularization term is applied for the non-binary first layer. In the LQ-Net-based

experiment, the training method is exactly the same as proposed in the original paper

(Zhang et al. (2018a)).

J(Wl,W1, b) = L(W b
l ,W1, b) + avg(||W1||22) + λ(avg

L∑
l=2

(1− ||W1||22) (5.2)

5.2 Sensitivity Analysis

With training method in Chapter 3.3.1, a reconstructed BNN model is trained

with the bit-sliced input and non-binary first layer. In the post-training stage, the

49

Input bit slices

X X X X X X
X X X X X X

X X X X X X

X X X X X X
X X X X X X X X X X X X

X X X X X X

X X X X X X

X X X X X X
X X X X X X X X X X X X

X X X X X X

X X X X X X

X X X X X X
X X X X X X Randomize

N
th

 bit slices in

(all channels)

Pre-trained

reconstructed BNN

ERRref

ERRinf
Sensitive

or not

ERRth

ERR

Error propagation

Figure 5.4: Sensitivity Analysis of the Reconstructed BNN with Distorted Input.

redundancy throughout the entire network can be measured, and also the sensitivity

of the bit-sliced input to the accuracy performance is evaluated.

As shown in Fig. 5.4, the reconstructed BNN is pre-trained as initial. Then,

the N th bit (N th least significant bit) slices in RGB channels are substituted with

binary random bit slices. The reason of why to choose binary random bit slices

over pruning is that, pruning reduces the size of the network. The experiment needs

to eliminate any other factors that can influence the accuracy performance. If the

difference between the actual inference error ERRinf and the reference point ERRref

(∆ERR = ERRinf − ERRref) is less than an error-tolerant threshold ERRth, the

N th bit slices are classified as prunable.

Without retraining the network, the error brought by random bit slices will prop-

agate throughout the entire network as shown in Fig. 5.4. With this tight constraint,

if there can be merely no accuracy drop in the inference stage. it can be inferred that

these bit slices with less sensitivity to the accuracy performance are useless in the

training stage and there are redundant connections throughout the entire network.

It also indicates that the existing redundancy in BNN allows us to further shrink the

network size. After evaluating the sensitivity of each bit slice, one can also analyze

the sensitivity of a stack of slices by using the same method. Then, a collection of

insensitive bit slices are found, which are prunable in the training stage. If P out of

50

N slices are categorized as accuracy insensitive, the number of channels C ′ can be

reduced by N/P times. That is to say, the size of the input array is reduced by N/P

times.

5.3 Rebuild a Compact BNN

In the most popular CNN architectures, such as AlexNet (Krizhevsky et al.

(2012)), VGG (Simonyan and Zisserman (2014)) and ResNet (He et al. (2016)), the

depth incremental ratio of feature map from one layer to the next layer is either dou-

bled or remaining the same. Intuitively speaking, it is useful to keep the same depth

incremental ratio across the entire network. Thus, a good starting point of rebuilding

a compact BNN (CBNN) is shrinking the depth of all the layers by N/P times. Since

there is a quadratic relation between depth and the net-work size, the reduction of

the network size of the CBNN is expected to be (N/P)2 times.

Although this work has not explored how to build an accurate model to optimize

the network compression ratio, it emphasizes the entire flow that proves and reduces

the redundancy of the entire BNN, and enables speedup in the inference stage with

the CBNN.

5.4 Experimental Evaluation

This chapter will first walk through the flow presented in Chapter 5.1 - 5.3 with

experimental results on the CIFAR-10 classification task in Chapter 5.4.1. Chapter

5.4.2 will present additional results on SNVH, Chars74K, GTSRB and ImageNet

datasets.

For the experiment setup, relative smaller models (AlexNet-scale) are built based

upon Hubara et al.’s BinaryNet in Theano and test it with CIFAR-10, SNVH, Chars74K

and GTSRB dataset. Due to the severe accuracy drop of fully binarized NNs (such

51

as BinaryNet) in large models, relative larger models (ResNet-scale) are tested based

upon a more relax BNN – LQ-Net with 1-bit weights and 2-bit activations. LQ-Net

experiment is conducted in Tensorflow and it is tested with ImageNet dataset. The

description of each dataset is listed as follow.

CIFAR-10 (Krizhevsky et al. (2009)). This is a dataset for a 10-category classifi-

cation task with 32 × 32 RGB images. The training dataset contains 50,000 images

and the testing dataset contains 20,000.

SVHN (The Street View House Numbers) (Netzer et al. (2011)). This dataset is

a real-world house number dataset from Google Street View images. It has 73,257

digits for training and 26,032 digits for testing, with the image size of 32× 32.

Char74K (De Campos et al. (2009)). This dataset contain 62 characters (0-9,

A-Z and a-z) from both natural images and synthesized images. 80% of the Char74K

images serve as the training set and the rest 20% serve as the testing set, with the

image size of 56× 56.

GTSRB (The German Traffic Sign Benchmark) (Stallkamp et al. (2011)). This

dataset includes 43-class traffic signs. The traffic sign images are resized to 32× 32.

It has 39,209 training data and 12,630 testing data.

ImageNet (Deng et al. (2009)). ImageNet is a large scale dataset which has more

than 14 million hand-annotated images. Here, a subset of ImageNet – ImageNet Large

Scale Visual Recognition Challenge 2012 (ILSVRC2012), which is commonly used

for large scale classification task. The ILSVRC2012 dataset covers 1000 categories.

The training and testing data contains 1.2 million and 50,000 images, respectively.

Average image resolution is around 450x450 pixels.

52

5.4.1 Experiment on CIFAR-10

Subsections of Chapter 5.4.1 show the experimental results corresponding to the

methodology in Chapter 5.1-5.3, respectively.

BNN Reconstruction

Following the input data conversion method in Chapter 5.1.1, the raw data of CIFAR-

10 dataset can be denoted as CIFAR(32,32,3). Each pixel value is represented by a

non-negative integer with magnitude A = 255. Thus, N = ceil(log2(255 + 1)) = 8

bits are enough for lossless binary representation. Then, the bit-sliced input can be

denoted as CIFARb
(32,32,24).

An image in CIFAR-10 dataset with different bit-level distortion is shown in Fig.

5.5. This image belongs to the “horse” category. In Fig. 5.5, the left most ones are

the same original image without any distortion. The N th bit indicates the N th least

significant bit (LSB). The distortion here is injected by replacing the entire bit slice

with a randomly generated binary bit map. In Fig. 5.5(a), only one single bit slice

get distorted at a time. Since only up to 1/8 elements of CIFARb get distorted, all

the distorted image can show a clear boundary of the horse with limited noise, except

the rightmost one with 7th bit slice gets distorted. If further distortion is applied to

CIFARb in multiple bit slices from the 1st to N th bit slices, the corresponding images

are shown in Fig. 5.5(b) and (c). The images in Fig. 5.5(c) are different from Fig.

5.5(b) that they don’t maintain 8-bit precision. Instead, the proposed method directly

prunes the 1st to N th bit slices of the images in Fig. 5.5(c). From visualization, in

both Fig. 5.5(b) and (c), the turning points is at 5th bit.

Distorted images in Fig. 5.5(a) and (b) are used for sensitivity analysis in recon-

structed BNN (Recon. BNN). Pruned images in Fig. 5.5(c) are used for training

53

R R R R R R R

R R R R R R R

R XRamdomize Prune

X X X X X X X

(a)

(b)

(c)

Figure 5.5: Visualization of a Horse Image in CIFAR-10 with Different Bit-level
Distortion in Spatial Domain and Frequency Domain.

Table 5.1: Performance Comparison with Different Input Format and 1st Layer
Configuration

Arch. Input First layer Network size Error rate

BNN full precision binary 1x 11.6%

FBNN bit slices binary 1.01x 14.0%

Reconstructed BNN bit slices non-binary 1.1x 10.1%

CBNN.

As illustrated in Chapter 5.1, the proposed structure of the reconstructed BNN is

different from the original BNN in both input format and the first layer. Table 5.1

compares the performance results of three network structures with different numerical

precision in their input and 1st layer. The baseline BNN design is the one in (Hubara

54

Table 5.2: Sensitivity Analysis of Single Bit Slice in Each Channel with Random
Noise Injected

Arch. N
th

 bit ERR/% ∆ERR/% Arch. N
th

 bit ERR/% ∆ERR/%

BNN 0 11.6 0.0 FNN 0 10.4 0.0

0 10.1 -1.5 0 10.4 0.0

1 9.8 -1.9 1 10.4 0.0

2 10.0 -1.6 2 10.4 0.1

3 10.1 -1.6 3 10.4 0.1

4 10.5 -1.2 4 10.9 0.5

5 12.5 0.8 5 13.0 2.6

6 20.9 9.2 6 21.4 11.1

7 40.3 28.6 7 43.8 33.4

Recon.

BNN
FNN

et al. (2016)), with full precision input and a binarized 1st layer. Here a CNN with

bit-sliced input, binarized weights and activations is defined as a FBNN. A FBNN

has bit slices input but BNN does not. By training with the method in Chapter 5.1,

FBNN shows 2.4% in the accuracy drop, compared with BNN. The accuracy here is

affected by computational complexity degradation in the 1st layer and unnormalized

input data. It also gives us some insights that the FBNN is hard to get a good

accuracy rate, which is in accord with Tang et al.’s opinion in (Tang et al. (2017)).

By introducing bit slices input and non-binary 1st layer to reconstruct the BNN, the

accuracy drop can be compensated as shown in Table 5.1. It’s able to even get a

better error rate than the baseline BNN with a slightly increased network size. It

also gives more margin in compressing the network.

Sensitivity Analysis of the Reconstructed BNN

With a pre-trained reconstructed BNN presented in the last chapter, now it’s able to

do bit-level sensitivity analysis as stated in Chapter 5.2.

First, analyze the sensitivity of a single bit slice. The results are shown in Table

5.2. The data shows in Table 5.2 is the average over 10 trials. In addition to the

reconstructed BNN, evaluation is also performed on the bit-level sensitivity of the

55

Table 5.3: Sensitivity Analysis of 1-N th Multiple Bit Slices in Each Channel with
Random Noise Injected

Arch.
1-N

th

bits
ERR/% ∆ERR/% Arch.

1-N
th

bits
ERR/% ∆ERR/%

BNN 0 11.6 0.0 FNN 0 10.4 0.0

0 10.1 -1.5 0 10.4 0.0

1 9.8 -1.9 1 10.4 0.1

1-2 9.9 -1.7 1-2 10.5 0.2

1-3 9.9 -1.8 1-3 10.5 0.2

1-4 10.7 -0.9 1-4 11.3 1.0

1-5 13.6 1.9 1-5 14.4 4.1

1-6 24.3 12.6 1-6 23.3 13.0

1-7 46.1 34.5 1-7 54.1 43.7

Recon.

BNN
FNN

input with its full-precision counterpart, which is denoted as FNN. With FNN, it

intends to show that the data itself has redundancy, which can be reflected in both

binary domain or fixed-point domain with the same pattern. The architecture in the

first row is taken as the reference design. The 1st row of ERR column is the ERRref

and the others are ERRinf . ∆ERR = ERRinf − ERRref . BNN is the reference

design for the reconstructed BNN. FNN with non-distorted input is the reference

design for the full-precision ones. It is interesting that the 1st, 2nd and 3rd bit slices

are at the same sensitivity level, concluded from the almost unchanged ∆ERR. In

sensitivity analysis, the point where ∆ERR flips the sign or increases abruptly is

defined as the turning point. The turning point here is the 5th bit.

Second, analyze the sensitivity of bit slices stacks. Each stack contains 1st to N th

bit slices in each color channel. The results are shown in Table 5.3. For the 1st, 2nd

and 3rd bit slices, it makes no difference if distortion is injected in one of them or all

of them. The 4th makes a slight difference of around 0.5% accuracy drop and the 5th

bit is also the turning point with around 3% accuracy drop.

Even when randomize 50% of the entire input values (1st to 4th bit slices) and the

variation propagates through the entire network, the accuracy doesn’t change much.

56

0 1 2 3 4 5 6 7

N
th

 bit

-5

0

5

10

15

20

25

30

35

40

45

 E
rr

o
r

(%
)

BIBNN & Nth single bit slice

FNN & single bit slice

BIBNN & 1-Nth multiple slices

FNN & 1-Nth multiple slices

ERRth=1%

Turning point

Figure 5.6: Error Rate of Randomizing One or Multiple Bit Slices in Sensitivity
Analysis.

Therefore, these bits are useless in the training stage. This validates the hypothesis

that the BNN still has redundancy. In Fig. 5.6, the error rate turning point is circled

at the 5th bit slice. The trend of error rate in the binary domain and full-precision

domain (shown in Fig. 5.6) align well. Simply setting an error-tolerant threshold

ERRth to determine how many bits are prunable can help the entire process to be

automatic. Here, ERRth is set to 1%. It can be concluded that 1st-4th bit slices here

are redundant and prunable through bit-level sensitivity analysis. Accordingly, the

reconstructed BNN can be shrunk to reduce the redundancy and get a more compact

architecture.

Rebuild a Compact BNN (CBNN)

Since 4 out of 8 bit slices are prunable, one can rebuild a compact BNN with the

depth of each layer shrunk by half. The performance of CBNN is shown in Table

5.4. CP. Ratio represents compression ratio and GOPs stands for Giga operations

(one operation is either an addition or a multiplication). Regarding the network size,

57

Table 5.4: Performance of CBNNs on CIFAR-10

MB CP. ratio # CP. ratio

BNN 0 11.6 0.0 1.75 1x 1.23 1x

1 10.3 -1.3 1.38 1.3x 0.98 1.3x

2 10.6 -1.0 1.02 1.7x 0.72 1.7x

3 10.8 -0.8 0.71 2.5x 0.50 2.5x

4 11.8 0.2 0.45 3.9x 0.32 3.8x

5 14.2 2.6 0.25 7.0x 0.18 6.8x

CBNN

GOPs

Arch.
1-N

th

bits

ERR

%

∆ERR

%

Network size

16 bits are used for measuring non-binary weights in the 1st layer, since it has been

proved that 16-bit precision is enough to maintain the same accuracy (Suda et al.

(2016)). The alternatives of pruning 1-N th (N = 1, 2, ..., 5) bit slices and shrink the

layerwise depth by 1/8 to 5/8 are also provided. The results align with the sensitivity

analysis that 1-3rd bit slices have little impact on the classification performance. The

choice of pruning 1-4th bit slices is the optimal one to maximize the compression

ratio with <1% accuracy drop. Since the size of the 1st layer is larger than that of

BNN, ideal network size compress ratio (4x) cannot be achieved regarding the entire

network. The actual compression ratio of the network size is 3.9x and the compression

ratio of number of GOPs is 3.8x.

5.4.2 Experiment on Other Datasets

This chapter will skip the sensitivity analysis and just show the result comparison

between the baseline and the final CBNNs processed in the same procedure.

For SVHN and Char74K datasets, the baseline architecture has half of the depth

in each layer as the one for CIFAR-10. For GTSRB, the baseline architecture has the

same filter configuration as the one for CIFAR-10. Since the input size of GTSRB is

larger than CIFAR-10, so the network for GTSRB has the same depth but larger width

and height in each layer. For ImageNet dataset, the same ResNet-18 architecture as

58

Table 5.5: Performance Results of CBNNs on SVHN, Chars47k, GTSRB and Ima-
geNet Datasets

MB
CP.

ratio
#

CP.

ratio

0 4.8 0.0 0.44 1x 0.31 1x

1 4.9 0.1 0.36 1.2x 0.26 1.2x

2 5.1 0.3 0.26 1.7x 0.19 1.6x

3 5.0 0.2 0.18 2.4x 0.13 2.4x

4 6.6 1.8 0.12 3.7x 0.08 3.7x

0 15.4 0.0 0.44 1x 0.31 1x

1 15.3 -0.1 0.36 1.2x 0.26 1.2x

2 15.3 -0.1 0.26 1.7x 0.19 1.6x

3 15.2 -0.2 0.18 2.4x 0.13 2.4x

4 16.3 1.0 0.12 3.7x 0.08 3.7x

0 1.0 0.0 1.81 1x 3.89 1x

1 1.0 0.0 1.39 1.3x 2.98 1.3x

2 1.2 0.2 1.02 1.8x 2.19 1.8x

3 1.6 0.6 0.71 2.5x 1.52 2.6x

4 2.0 1.0 0.46 3.9x 0.97 4.0x

0 37.1 0.0 150 1x 3.0G 1x

1 37.1 0.0 115 1.3x 2.6G 1.3x

2 37.2 0.1 113 1.8x 2.3G 1.8x

3 38.5 1.5 94 2.5x 1.9G 2.6x

GOPs

SVHN

Chars47k

GTSRB

Dataset
1-N

th

bits

ERR

%

∆ERR

%

ImageNet

Binary-

Net

LQ-Net

Arch.

Network size

Zhang et al.’s work is used.

In Table 5.5, it shows the performance results of CBNNs evaluating on different

datasets and network setting. The baseline for each dataset is shown in the first row

of each dataset region. For Chars47k and GTSRB, the CBNNs are able to maintain

no more than 1% accuracy drop, achieving 3.7x and 3.9x network size reduction,

respectively. For SVHN dataset, the accuracy drop between pruning 1-3rd bits and

pruning 1-4th bits is large. In order to preserve no more than 1% accuracy drop,

the network size reduction is yield to 2.4x. For ImageNet dataset, the accuracy drop

1.5%, while gaining 2.5x network size reduction.

59

30
15

53
31

15 9 15 11

295

184

Unit: ms

2x

1.7x

1.7x 1.4x

1.6x

Figure 5.7: Runtime Comparison of Different Network Compression Technique.

5.4.3 Runtime Evaluation

The actual runtime performance of CBNNs is evaluated on Nvidia GPU Titan

X. The batch size is fixed as 128 in all the experiments. XNOR-based GPU kernel

(Hubara et al. (2016)) is used for CBNN implementation. The computational time is

calculated by averaging over 10 runs.

Fig. 5.7 illustrates the actual runtime and runtime speedup of 4 CBNNs compared

with their baseline BNNs. The configurations are the same as the highlight ones in

Table 5.4 and Table 5.5. For the CBNNs processing CIFAR-10, GTSRB, Char47k and

ImageNet datasets, their network size and total GOPs shrink 3.7-4.0x, resulting in the

speedup of 1.6-2.0x. For the CBNN processing the SVHN dataset, its network size and

total GOPs shrinks 2.4x, resulting in a speedup of 1.4x. As it is proved in (Han et al.

(2016)), combining pruning, quantization and Huffman coding technique, an FNN

can achieve up to 4x speedup. (Hubara et al. (2016)) demonstrate that a multilayer

perceptron BNN can get 5x speedup compared with its full-precision counterpart. On

60

top of the BNN, the proposed CBNN can give extra 1.4-2.0x speedup. Therefore, the

CBNN can achieve 7.0-9.9x speedup compared with FNN.

5.5 Summary

In this chapter, a novel flow is proposed to explore the redundancy of BNN and

remove the redundancy by bit-level sensitivity analysis and data pruning. In order to

build a compact BNN, one should follow these three steps. Specifically, first recon-

struct a BNN with bit-sliced input and non-binary 1st layer. Then, inject randomly

binarized bit slices to analyze the sensitivity level of each bit slice to the classification

error rate. After that, prune P accuracy insensitive bit slices out of total N slices and

rebuild a CBNN with depth shrunk by (N/P) times in each layer. The experiment

results show that the error variation trend in sensitivity analysis of the reconstructed

BNN is well aligned with that of CBNN. In addition, the CBNN is able to get 2.4-

3.9x network compression ratio and 2.4-4.0x computational complexity reduction (in

terms of GOPs) with no more than 1% accuracy loss compared with BNN. The actual

runtime can be reduced by 1.4-2x and 7.0-9.9x compared with the baseline BNN and

its full-precision counterpart, respectively.

61

Chapter 6

PRUNING BINARY NEURAL NETWORK VIA WEIGHT FLIPPING

FREQUENCY

As both 0s and 1s are non-trivial in BNNs, it is not proper to adopt any existing

pruning method of full-precision networks that interprets 0s as trivial. In this chapter,

a pruning method tailored to BNNs is presented and, it also illustrates that BNNs

can be further pruned by using weight flipping frequency as an indicator of sensitivity

to accuracy.

6.1 Preliminary

In this chapter, the pruning methods that involve multiple rounds of pruning and

retraining in a iterative fashion is referred as iterative pruning. The other pruning

methods that prune a network based on optimization techniques without the need of

retraining is referred as optimization-based pruning.

6.1.1 Iterative Pruning

full-precision neural networks (Han et al. (2016); Luo et al. (2017); Molchanov

et al. (2019)) generally follow a three-step training pipeline, as shown in Fig. 6.1.

If not starting from a pre-trained floating-point network, training one is the first

step. The second step is to prune out redundant connections determined by certain

threshold values. Intuitively, if the absolute values of weights are sufficiently small,

their influence on the output values is fairly limited. The third step is to fine-tune the

network to re-train the inherited weights. The second and third steps are repeated

to further prune and fine-tune the network in an iterative fashion until satisfactory

62

Train Connectivity

Prune Connections

Retrain Weights

Figure 6.1: The Overview of the General Pruning Flow.

performance is achieved. Unfortunately, it is impossible to directly apply the iterative

pruning method developed for full-precision networks to BNNs. Since 0s and 1s are

both non-trivial in BNNs, the absolute values of the binarized weights are no longer

a valid indicator of their sensitivity to accuracy thus cannot be used to guide the

pruning of BNNs. Therefore, it is improper to adopt any iterative pruning methods

for full-precision networks that interpret 0s as trivial in BNN pruning.

6.1.2 Optimization-based Pruning

For the same reason, the optimization-based pruning methods (Molchanov et al.

(2019); Yu et al. (2018)) that adopt a pruning objective function based upon the

exact values of network weights cannot be applied to pruning BNNs (Molchanov

et al. (2019)) either. In case that the pruning objective function is based upon the

separated masking arrays of weights (Yu et al. (2018)), the pruned network models

will have unstructured weights. As a result, their hardware implementations will

require extra memory to store the flags of prunable weights as well as extra logic

for manipulating the memory pointers to skip the corresponding computation, which

creates difficulty in achieving actual runtime speedup on CPUs and GPUs.

63

6.2 Methodology

To tackle the above-mentioned problems, a novel BNN-pruning method is pro-

posed, which adopts weight flip frequency (f) as an indicator of the sensitivity of bi-

nary weights to accuracy to guide the pruning of BNNs. Experiments are conducted

to empirically validate that a high and low f indicates a low and high sensitivity

of binary weights to accuracy, respectively. Therefore, f is an effective indicator for

identifying the binary weights that have a high criticality to pruning and can be

pruned with a well-bounded accuracy drop.

6.2.1 Weight Flip Frequency

In this chapter, weight flip frequency (f) is defined as the flipping count of a

weight during a specified last stage of training (from epochstart to epochend). In

BNNs, weight flipping means that a weight value switches from 0/-1 to 1 or 1 to 0/-1.

During the specified training interval, f is increased by 1 whenever the weight value

flips. A hypothesis is made that, toward the end of the training, the last few percent

of accuracy gain stems from the update of the weights with a high weight flipping

frequency, and these weights have little influence on the accuracy that has already

been established. Therefore, f can be used as the indicator of the sensitivity of binary

weights to accuracy as well as their criticality to pruning . An f being equal to 0

or 1 means that the weights belong to this f group remain stable or become stable

88.9

87.7

88.7
88.4 baseline

f=0/1

f>2

random

Figure 6.2: Accuracy Comparison for Randomizing Different Groups of Weights.

64

toward the end of the training, which implies that, if one flips their values, it is most

likely to hurt the accuracy. On the contrary, an f being high or hitting the upper

bound (the weight flips in every iteration) means that the values of this group of

“noisy weights” most likely has little influence on the accuracy gain. Such behavior

can be interpreted as that the training is trying fine-tune these “noisy weights” to

further shape the decision boundary of classification but failed as they turned out to

have little impact on the accuracy gain.

The experiments are conducted to validate our hypothesis. The experiments are

conducted on the CIFAR-10 (Krizhevsky et al. (2009)) dataset with a 9-layer binarized

NIN (Lin et al. (2013)). The network architecture is the same as the one described in

Lin et al. (2013). The training interval for f analysis is set as the epoch range that

contribute to the last 1% of accuracy gain toward the end of training. The weights

are partitioned into three groups. The 1st and 2nd group of weights satisfies f=0/1

and f=2, respectively. The 3rd group of weights contain the same amount of weights

as the 1st group, but are randomly selected from the entire weight set. Fig. 6.1

shows the accuracy comparison when randomizing different groups of weights during

inference. Note that only weight randomization is performed in the experiments, and

no fine-tuning of the weights is performed after the randomization. The results are

averaged over ten trials. The experiment results show a 1.1% gap between the baseline

model and the one with the 1st group of weights randomized. Also, randomizing the

1st group of weights achieves even lower accuracy than randomizing the same amount

of randomly selected weights (the 3rd group).

These results indicate that the 1st group of weights, where f is equal to 0 or 1, is

the most sensitive to the final accuracy rate, while the 2nd group of weights with a

high f has little impact. This validates our hypothesis and suggests that f ≥ 2 is a

viable threshold for identifying the prunable binary weights.

65

Train Connectivity

f Analysis

Shrink Channel

Retrain Network

Figure 6.3: The Overview of the BNN Pruning Flow.

6.2.2 BNN Compression Flow

The overall flow of BNN pruning is shown in Fig. 6.3, and Fig. 6.4 illustrates the

training interval during which f analysis shall be performed. ∆acc is the accuracy

drop tolerance defined by the user. epochend is the final epoch of the training phase.

epochstart is the starting point of f analysis, where the accuracy at epochstart is ∆acc

lower than the final accuracy at epochend.

The first step in the BNN-pruning method is to train a BNN from scratch. In

the case of a pre-trained BNN model is available, the last stage of training (from

epochstart to epochend) needs to be performed again for the purpose of f analysis.

∆acc

epochstart epochend

a
c
cu

ra
c
y

epoch

count

f

Figure 6.4: The Illustration of Training Interval for f Analysis.

66

The second step to analyze the weight flip frequency – f . One shall log the

statistics of f for each weight during the training interval from epochstart to epochend.

Subsequently, one shall calculate the portion of insensitive weights (pL%) in the Lth

layer that satisfy f ≥ 2 for each layer.

The third step is to reduce the size of the BNN by shrinking the number of channels

in the Lth layer by pL%, and the forth step is to retrain the network at the reduced

size. One shall repeat the second, third, fourth steps in a iterative fashion until the

maximum percentage of insensitive weights (pL%) is close to 0, which indicates that

there is no room for further compression.

Preserving the pruned architecture and fine-tune the inherited weights in BNN

pruning is not recommended for two main reasons. First, the insensitive weights are

found to be sparsely distributed and unstructured in our experiments. Unstructured

pruning can hardly result in any saving for BNNs as one has to introduce memory

overhead to label the prunable weights that only have 1 bit as well as extra logic

for manipulating the memory points to skip the corresponding computation. Second,

prior work shows that retraining inherited weights in conventional pruning methods

typically does not produce better performance than simply training a smaller model

from scratch (Liu et al. (2018b)). Therefore, it is recommended reducing the size

of the BNN network at each layer guided by the f analysis and pL% and retraining

the smaller BNN model in BNN pruning. Comparing to the intuitive approach of

exploring the appropriate network size through binary search, the proposed BNN-

pruning method can quantitatively analyze the layer-wise redundancy to effectively

reduce the BNN size, which greatly reduces the search space and time.

67

Table 6.1: The Layer-wise BNN-pruning Results of the Binarized NIN at Each
Iteration.

p L /% channels p L /% channels p L /% channels p L /% channels

conv2d 5x5 192 N/A 192 N/A 192 N/A 192 N/A 192

binconv2d 1x1 160 5.0 152 5.9 143 0.7 142 3.5 137

binconv2d 1x1 96 5.2 91 5.5 86 1.2 85 4.7 81

binconv2d 5x5 192 1.5 189 1.1 187 0.5 187 1.0 185

binconv2d 1x1 192 9.9 173 5.8 163 3.1 158 6.3 148

binconv2d 1x1 192 3.1 186 2.7 181 0.6 180 2.2 176

binconv2d 3x3 192 1.6 189 1.1 187 0.5 187 1.1 185

binconv2d 1x1 192 4.2 182 4.9 173 1.2 171 3.5 165

conv2d 1x1 10 N/A 10 N/A 10 N/A 10 N/A 10

GOPs (M)

2
nd

3
rd

4
th

baseline

206220 193 190 180

layer filter

N
th

 iteration

pooling

pooling

pooling

1
st

6.3 Experimental Evaluation

The proposed BNN-pruning method is tested with the CIFAR-10 (Krizhevsky

et al. (2009)) dataset on two BNNs: the binary versions of a 9-layer binarized NIN

(Lin et al. (2013)) and the AlexNet (Krizhevsky et al. (2012)). The binarization

method used in this chapter is introduced by the XNOR-net (Rastegari et al. (2016)).

The source code we build is based on (Yu (2019)).

The first set of experiments is conducted on the binarized NIN. The network

architecture used in our experiment is shown in Table 6.1. Table 6.1 also shows the

layer-wise pruning results in four iterations of BNN pruning. Note that the 1st and the

last layer are floating-point layers, and we do not apply any pruning on them. In each

iteration, our target ∆acc is set to 0.5%. After four iterations of BNN pruning, the

final network model has a 20% reduction in GOPs (Giga operations). The accuracy of

the baseline model is 86.5%, and the accuracy of the final network model is subject to

the target accuracy drop of 0.5%. Compared with directly performing a binary search

68

Table 6.2: The Layer-wise BNN-pruning Results of the Binarized AlexNet at Each
Iteration.

p L /% channels p L /% channels p L /% channels p L /% channels

con2d 3x3 128 N/A 128 N/A 128 N/A 128 N/A 128
binconv2d 3x3 128 5.5 121 3.3 117 5.1 111 1.8 109

binconv2d 3x3 256 6.3 240 4.6 229 2.6 223 2.7 217
binconv2d 3x3 256 8.2 235 7.2 218 6 205 4.4 196

binconv2d 3x3 512 4.5 489 2.2 478 3.6 461 1.3 455
binconv2d 3x3 512 1.8 503 2.8 489 0.2 488 1.4 481

GOPs (M)

578664032 535141184 5.02E+08 480678368

4th

640 579 535 502 481
pooling

pooling

pooling

layer filter
baseline

N th iteration
1st 2nd 3rd

for the appropriate network size, the proposed BNN-pruning method can provide a

layer-wise, quantitative guideline to effectively shrink the BNN size. For the runtime

evaluation, we tested the layer-wise runtime of the binarized NIN using an optimized

binary kernel on an NVIDIA TitanX GPU. The final network model after BNN

pruning leads to a 15% runtime speedup as comparing to the baseline model.

In addition, we tested the proposed BNN-pruning method on the binarized AlexNet

with the CIFAR-10 dataset (Krizhevsky et al. (2009)), as shown in Table 6.2. In this

set of experiments, we set the target ∆acc to 1.0%. After four iterations of BNN prun-

ing, the final network model results in a 40% GOPs reduction and a 25% runtime

speedup on an NVIDIA TitanX GPU, subject to the 1.0% target accuracy drop. The

BNN pruning results and their impact on runtime speedup are summarized in Table

6.3. Overall, the experiment results show that using the weight flipping frequency as

Table 6.3: Experiment Results of BNN Pruning.

Arch. GOPs reduction Speedup ∆acc

NIN 20% 15% 0.5%

AlexNet 40% 25% 1.0%

69

the indicator of weight sensitivity to guide BNN pruning can lead to 20-40% GOPs

reduction and 15-25% runtime speedup at the limited cost of 0.5-1.0% accuracy drop.

6.4 Summary

This chapter presents a study that explores the weight redundancy in BNNs and

propose a generic solution for BNN pruning. The weight flipping frequency f is an

effective indicator of the sensitivity of binary weights to accuracy and their criticality

to pruning. Reducing the BNN size by shrinking the number of channels in the

Lth layer by a factor of pL% is the key to effectively removing redundancy in BNN

pruning.

70

Chapter 7

LIGHT-WEIGHT OBJECT DETECTION NETWORKS

Object detection is the key module in face detection, tracking objects, video surveil-

lance, pedestrian detection, etc. (Redmon et al. (2016); Redmon and Farhadi (2017)).

With the recent development of deep learning, it boosts the performance of object de-

tection tasks. However, regarding the computational complexity (in terms of FLOPs),

a detection network can possibly consume three orders of magnitude more FLOPs

than a classification network, which makes it much more challenging to be deployed

on an edge device.

There are two common methods to reduce the FLOPs in a detection network. One

way is to switch to another backbone, while the other is to reduce the input image

size. The first method results in noticeable accuracy drop if substitutes a ResNet

backbone (He et al. (2016)) with a more shallow one. Typically it is not considered

as a good accuracy-FLOP trade-off scheme with a small variation. With regard to

reducing the input image size, it is an intuitive way to reduce the FLOPs. However,

the accuracy-FLOP trade-off curve shows degradation in a polynomial trend (Huang

et al. (2017)). There is an opportunity to find a more linear degradation tendency

curve for a better accuracy-FLOP trade-off. This work proposes only to replace cer-

tain branches/layers of the detection network with light-weight architecture and keep

the rest of the network unchanged. For the RetinaNet, the heaviest branch is the

succeeding layers of the finest FPN (P3 in Fig. 7.1), which takes up to 48% of the

total FLOPs. This work proposes different light-weight architecture variants. More-

over, the proposed method can also be applied to other blockwise-FLOPs-imbalance

detection networks.

71

7.1 Preliminary

In this chapter, the mAP is used as the indicator to categorize the existing object

detection solutions. The mAP-20-tier solutions are the most aggressive ones that tar-

get highly energy- and resource-constrained devices, such as battery-powered mobile

devices. The existing solutions, such as YOLOv1, YOLOv2, SSD, MobileNetv2-

SSDLite (Redmon et al. (2016); Redmon and Farhadi (2017); Liu et al. (2016)) have

pushed hard to reduce the memory consumption by trading off their accuracy perfor-

mance. Their detection accuracy on the large dataset (COCO test-dev 2017 (Lin et al.

(2014))) yields to mAP of 22-25%. The mAP-40-iter solutions, such as MaskRCNN

and its variations, on the contrary, are targeting the best mAP performance with less

concern about computation resources. The mAP-30-iter solutions do not scarify the

accuracy performance too much but are more aware of the computational efficiency.

In the mAP-30-tier, popular solutions include Faster R-CNN, RetinaNet, YOLOv3

(Ren et al. (2015); Lin et al. (2017c); Redmon and Farhadi (2018)), and their variants.

These solutions can be potentially deployed on edge GPUs (e.g., Nvidia T4 GPU)

or FPGAs (e.g., Intel Arria 10 FPGA based acceleration card), since the on-board

memory resources are generally enough for preloading the weights of the mAP-30-tier

networks. (Huang et al. (2017)) verifies the linear relation between FLOP count and

inference runtime for the same kind of network.

RetinaNet is taken as the baseline since it has the best FLOP-mAP trade-off

in the mAP-30-tier. The FLOP count is used as a key indicator for comparison.

By applying Faster R-CNN (Ren et al. (2015)), RetinaNet (Lin et al. (2017c)) and

YOLOv3 (Redmon and Farhadi (2018)) on the same task for COCO detection dataset,

which takes an input image around 600×600-800×800, the mAP will hit in the range

of 33%-36%. However, the FLOPs of Faster R-CNN (Ren et al. (2015)) is around 850

72

Res5

Res4

Res3

Res2

Res1 1/2

1/4

1/8

1/16

1/32

M5

M4

M3

1/32

1/16

1/8

P5

P4

P3

P6

P7

1/32 1/64

1/16

1/128

1/8

W×

H×KA

W×H×4A

W×H×256

W×H×256

D3-D7

Image

ResNet-50 FPN Detection

backend

Figure 7.1: RetinaNet (ResNet50-FPN-800x800) Network Architecture.

GFLOPs (gigaFLOPs), which is at least 5x more than that of RetinaNet and YOLOv3

(Redmon and Farhadi (2018)). Apparently, Faster R-CNN is not competitive in

terms of computational efficiency. From YOLOv2 (Redmon and Farhadi (2017))

to YOLOv3 (Redmon and Farhadi (2018)), it is interesting that the authors have

aggressively increased the number of FLOPs from 30 to 140 GFLOPs to gain mAP

improvement from 21% to 33%. Even with that, the mAP of YOLOv3 is 2.5%

lower than RetinaNet with 150 GFLOPs. Also, a low-end version of MaskRCNN (He

et al. (2017)) with mAP of 37.8% cannot beat RetinaNet in terms of runtime. These

observations inspire us to take the RetinaNet as the baseline to explore the feasibility

of creating a light-weight version of it.

In the following paragraphs, the RetinaNet network is analyzed with a focus on

the distribution of the number of floating-point operations (FLOPs) across different

layers. Then, the approach of building a light-weight RetinaNet is discussed.

The RetinaNet architecture is composed of three parts – a backbone, a feature

pyramid network (FPN) (Lin et al. (2017b)), and a detection backend, as shown in

Fig. 7.1. The image is first processed by the backbone, which usually is the ResNet

73

0.8 4.0 3.7

22.1

42.9

0.4 0.8 1.7 2.1 2.1 3.9 3.9 3.9 3.9 3.9

1.0 5.1 6.9 10.5
5.1

0.8 0.4 0.2 0.1 0.3

48.1

11.5
4.5 4.5 1.1

memory/% FLOPs/%

ResNet-50 FPN Detection backend

Figure 7.2: The FLOPs and Memory (Parameter) Distribution of RetinaNet Across
Different Blocks.

Architecture. Here, it is worthy of noting that although MobileNet’s performance

(Howard et al. (2017)) is on a par with ResNet in classification tasks, MobileNet

may not be a good alternative to ResNet for detection tasks. From both (Huang

et al. (2017)) and the author’s observation, using MobileNet (Howard et al. (2017))

as the backbone for detection tasks will suffer from much more accuracy drop than

it does for classification tasks. The main reason is that the confidence scores of a

MobileNet-based backbone are the trade-off for lower computation costs. Therefore,

a MobileNet-based backbone is hardly a desirable choice for high precision object

detection networks. The backbone, together with the subsequent FPN forms an

encoder-decoder-like network. The benefit of the FPN is that it merges the features

of consecutive layers from the coarsest to the finest level. After that, the multi-scale

pyramid features (P3-P7) feed into the backend where two detection branches are

used for bounding box regression and object classification. Note that the detection

branch and bounding box branch do not share weights. While the weights of each

branch are shared across the pyramid features (P3-P7).

The FLOP distribution of RetinaNet across different blocks is shown in Fig. 7.2.,

where each block is corresponding to the same block in Fig. 7.1. The detection back-

74

1x1 conv, 256

3x3 conv, 256

1x1 conv, 256

3x3 conv, 256

1x1 conv, 256

1x1 conv, 256

1x1 conv, 256

1x1 conv, 256

3x3 conv, dw

1x1 conv, 256

3x3 conv, dw

1x1 conv, 256

3x3 conv, dw

1x1 conv, 256

3x3 conv, dw

1x1 conv, 256

D-block-v2 D-block-v3D-block-v1

Figure 7.3: Light-weight Blocks for Detection Backend.

end D3-D7 is the succeeding layer of P3-P7, respectively. As in the original design,

D3-D7 share the same weight parameters, the average memory cost of D3-D7 is shown

in Fig. 7.2. The FLOP count of the D3 block dominates the total FLOP count at

48.1%. This unbalanced FLOP distribution is quite different from that of the ResNet

architecture, which has a small FLOP count variance across different blocks. The

unbalanced FLOP distribution presents an opportunity to get a meaningful overall

FLOP reduction at little cost of accuracy drop by only reducing computational com-

plexity of the heaviest layer. Specifically, the FLOPs of D3 can be reduced by half,

the total FLOPs can be reduced by 24%.

7.2 Architecture Design

7.2.1 Light-weight Block

Intuitively, it is able to get FLOP reduction by reducing the filter size. As shown

in Fig. 7.3, different block designs are proposed for the detection branches of ResNet.

The D-block-v1 applies the MobileNet (Howard et al. (2017)) building block. A 3×3

depth-wise (dw) convolution is followed by a 1×1 convolutional block to substitute

75

D3

D4-D7

W×H×KA

W×H×4A

P5

P4

P3

P7

P6

P5

P4

P3

P7

P6

Fully shared weight for D3-D7

Shared weight for D4-D7

W×H×KA

W×H×4A

WxHx256

WxHx256

3x3 conv

D-block-v1/2/3

W×H×256

W×H×256

W×H×KA

W×H×4A

3x3 conv

W×H×256

W×H×256

(a) (b)

D3-D7

 Independent weight for D3

Figure 7.4: Fully and Partially Shared Weights for Detection Backend.

an original layer. The D-block-v2 alternately uses the 1×1 and 3×3 kernel. It is

inspired by YOLOv1 (Redmon et al. (2016)), which has replaced the 3×3 kernels

without introducing residual blocks. The reduction of D-block-v3 is more aggressive,

which replaces all the 3×3 convolutions with 1×1 convolutions. Apparently, the

light-weight block causes a certain accuracy drop as a trade-off for less computation

cost. Therefore, this work proposes to add limited overheads to compensate for the

accuracy drop here with a partially shared weights scheme.

7.2.2 Partially Shared Weights

As illustrated in the last paragraph, the light-weight detection blocks is to trade

off lower computational complexity with limited accuracy drop. To compensate for

the accuracy drop, this work proposes to replace the fully shared weight scheme in the

original RetinaNet with a partial shard weight scheme. As shown in Fig. 7.2, P3-P7

76

are the multi-scale feature map outputs of FPN, which are then fed into detection

backend D3-D7, respectively. Although D3-D7 share the weight parameters, D3-D7

have different input sizes (P3-P7), respectively, and D3-D7 are processed in serial.

Fig. 7.4(a) is the original detection backend that D3-D7 fully share the weights. In

Fig. 7.4(b), only D4-D7 share the weights with the original configuration, while D3

is processed by the light-weight D-block-v1/v2/v3 proposed in Fig. 7.3.

The proposed partially shared weights scheme mainly has two advantages. First,

as D3 has its independent weight parameters, it can learn more tailored features for its

branch, which can compensate for the accuracy drop brought by lower computational

complexity. For another, this enables us not to touch the rest of the network but

only solving the heaviest bottleneck block. Also, since the backbone (ResNet-50)

dominates the memory consumption (as shown in Fig. 7.2), the overhead of memory

consumption here (less than 1%) can be negligible.

7.3 Experimental Evaluation

7.3.1 Experimental Setup

To measure the accuracy performance, experiments are performed in Caffe2 with

4 Titan X GPUs. The experiments build upon the open-source code of RetinaNet

in (Girshick et al. (2018)). As the original work is trained with 8 GPUs, this work

scales down the base learning rate by 2x and extend the training epochs by 2x, as

suggested in (Goyal et al. (2017)). Besides, since (Liu et al. (2018b)) proves the deep

neural network is less easy to overfit when its computational complexity is reduced

by network compression, training epochs are further extended (by the same ratio

of FLOP reduction) for getting a better accuracy rate. In all the experiments, the

network configuration is the same as RetinaNet-ResNet50-FPN.

77

To evaluate the runtime performance on FPGA-based edge devices, RetinaNet

and light-weight RetinaNet are both mapped on an Intel Arria 10 GX 1150 FPGA

acceleration card hosted by an Linux edge server. Intel FPGA SDK for OpenCL

version 18.0 is used to compile the device code. The host code is written in C/C++

and the device code in OpenCL C language. SystolicArrayCNN – an open-source

optimized OpenCL kernel is used for CNN acceleration (Dua (2019)). Each layer

is run with an optimized OpenCL-based FPGA kernel for the runtime and power

evaluation.

7.3.2 Performance on COCO Dataset

The COCO dataset (Lin et al. (2014)) is considered as the most challenging dataset

for object detection. The training and testing of light-weight/original RetinaNet is

conducted with 2017 COCO training dataset and COCO test-dev, respectively.

Table 7.1 shows the comparison among different light-weight blocks that proposed

in Chapter 7.2.1. In this set of experiments, the light-weight block is only used in the

regression branch (for the bounding box) of detection backend, which is the upper

branch shown in Fig. 7.1 detection backend. The results of Table 7.1 show that

the D-block-v1 – the one with the MobileNet building block has 0.8% lower mAP

compared with the D-block-v3, which has the same FLOP reduction percentile. It

also aligns with our analysis in Chapter 7.2 that although MobileNet is proven to a

powerful light-weight classification network architecture, MobileNet building block is

not guaranteed to be the best building block substitution for other computer vision

tasks. Therefore, with the same scale of FLOP reduction, D-block-v3 is chosen instead

of D-block-v1 in the following experiment. As the D-block-v2 performs less aggressive

FLOP reduction, its mAP is only reduced by 0.1%, which is a good trade-off for a

small scale FLOP reduction (15%).

78

Table 7.1: Comparison Between Different Light-weight Block.

Light-weight block scale mAP ∆mAP\% GFLOPs∆FLOPs/%

original 800 35.7 0 156 0

D-block-v1 800 34.3 1.4 135 15.4

D-block-v2 800 35.6 0.1 135 6.4

D-block-v3 800 35.1 0.6 89 15.4

Table 7.2: Configurations of Different Light-weight (LW) RetinaNet.

Classification Bouding box

LW-RetinaNet-v1 D-block-v2 √

LW-RetinaNet-v2 D-block-v3 √

LW-RetinaNet-v3 D-block-v3 √ √

Detection backend
Light-weight block

Table 7.3: Resource Utilization of Intel Arria 10 GX 1150 FPGA Implementation.

Resource Type Utilization amount Percentage

Frequency 210 MHz -

Logic utilization 248K / 427K 58%

DSP utilization 1,184 / 1,518 78%

BRAM utilization 1,818 / 2,713 67%

The configurations for different versions of light-weight RetinaNet with D-block-

v2 or D-block-v3 light-weight blocks are shown in Table 7.2. Specifically, Table 7.2

shows which light-weight block is applied to which branches of the backend in each

version. The corresponding light-weight RetinaNet performance results are shown in

Table 7.4. As scaling down input image size is the only method that proposed in

existing work of FLOP-mAP trade-off for RetinaNet, 7.4 also cites the performance

results of the original RetinaNet at different input scales from the original paper

(Lin et al. (2017c)). For better comparison between the proposed method and input

image scaling method, Fig. 7.5 visualizes the FLOPs and accuracy trade-off. Each

data point in Fig. 7.5 corresponds to one row of the results in 7.4. The trending curve

of light-weight RetinaNet is marked in red dot curve and that of original RetinaNet

in blue dot curve. The upper-left corner is the preferred corner in the FLOP-mAP

79

Table 7.4: Comparison of Original RetinaNet and Proposed Light-weight RetinaNet.

scale mAP AP50 AP75 APS APM APL GFLOPs ratio runtime(s)

power

efficiency

(µJ/pixel)

RetinaNet 800 35.7 55 38.5 18.9 38.9 46.3 156 0 1.7 74

RetinaNet 700 35.1 54.2 37.7 18 39.3 46.4 119 1.3x 1.3 74

RetinaNet 600 34.3 53.2 36.9 16.2 37.4 47.4 88 1.8x 0.9 70

LW-RetinaNet-v1 800 35.4 54.4 38.2 18.3 38.7 46 135 1.1x 1.5 66

LW-RetinaNet-v2 800 35.1 54.3 37.7 17.9 38.4 45.7 114 1.4x 1.2 53

LW-RetinaNet-v3 800 34.6 53.1 37.3 15.7 38.7 44.6 89 1.8x 0.9 39

plane. As the red curve is constantly closer to the preferred corner, it indicates

that the proposed method has a better FLOP-mAP trade-off than the conventional

input image scaling method. The difference between these two methods results in

a 0.1% mAP gap at the same number of FLOPs with low reduction ratio of 15%.

However, when further reducing the number of FLOPs, the proposed method shows

a trend of linear degradation, while the input image scaling method degrade in a

more polynomial fashion. Fig. 7.5 clearly shows a divergence around 90 GFLOPs,

where the input scaling method yields to 0.3% more accuracy drop than the proposed

method.

The experimental setup in Chapter 7.3.1 is used to evaluate the runtime perfor-

mance on FPGA-based edge devices. The resource utilization of the FPGA kernel

mapped on an Intel Arria 10 GX 1150 FPGA board is shown in Table 7.3. The actual

runtime shown in Table 7.4 is evaluated by accumulating the layerwise runtime. The

reported power is the total board power that measured by actual testing on the FPGA

board. Comparing the RetinaNet at the input scale of 600 to LW-RetinaNet-v3, LW-

RetinaNet-v3 achieves an 0.3% mAP improvement over the original RetinaNet for

the same runtime, and also is 1.8x more energy-efficient. One can observe that the

actual runtime is approximately proportional to the FLOP count in Table 7.4, which

also validates the feasibility of choosing FLOP count as the indicator to optimize the

80

RetinaNet-600

RetinaNet-700

RetinaNet-800

LW-RetinaNet-

v1

LW-RetinaNet-

v2

LW-RetinaNet-

v3

34

34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

35.8

80 90 100 110 120 130 140 150 160

m
A

P
/%

GFLOPs

+0.3%

mAP

+0.1%

mAP

Figure 7.5: FLOPs and mAP Trade-off for Input Image Size Scaling Versus the
Proposed Method.

heavy FLOP layers for speedup.

As any detection methods with FPN structure can result in an imbalanced FLOP

distribution, the proposed method can be potentially applied to any such kind of

detection network for a better FLOP-mAP trade-off with more energy-efficient edge

inference.

7.4 Summary

This chapter presents a light-weight RetinaNet model that has a constantly bet-

ter FLOP-mAP trade-off curve (linear degradation) than a naive input image scaling

approach (polynomial degradation). The key is to substitute the heaviest bottle-

neck layer of blockwise-FLOP-imbalance RetinaNet with simplified building blocks,

while keeping the rest of the network untouched. Experiment results show that, at a

1.8x FLOP reduction point, the light-weight RetinaNet achieves 0.3% mAP improve-

ment and 1.8x more energy-efficiency on an FPGA-based edge node. The proposed

method can be potentially applied to any FPN-based detection network that has im-

81

balanced blockwise FLOP distribution for an improved FLOP-mAP trade-off, with

more energy-efficient inference at the edge.

82

Chapter 8

CONCLUSION AND FUTURE WORK

To enable timely IoT services on edge devices, this dissertation addresses the

challenge from both hardware and algorithm perspectives. The main thrusts of this

dissertation can be summarized as follows:

• Hardware solutions: For the FPGA-based solution, an optimized FPGA ac-

celerator architecture is proposed for BCNNs (Chapter 3). BCNNs are ideal for

efficient hardware implementations on FPGAs regardless of the size of workload.

The bitwise operations in BCNNs allow for the efficient hardware mapping of

convolution kernels using LUTs, which is the key to enable massive computing

parallelism on an FPGA. Applying the optimal levels of architectural unfold-

ing, parallelism, and pipelining based on the proposed throughput model is the

key to maximizing the system throughput. For the ASIC-based solution, an

ASIC accelerator for real-time and low-latency natural scene text interpreta-

tion (NSTI) on power constrained mobile devices is proposed (Chapter 4). The

NSTI accelerator takes the cropped scene text image as input and output a

salience map for pixelwise classification result. To target a real-time through-

put and low latency, a B-CEDNet is adopted as the core architecture to enable

massive spatial parallelism. A highly pipelined data flow control is applied to

enable temporal parallelism. Moreover, all the binarized intermediate results

and parameters are stored on chip to eliminate the power consumption and la-

tency overhead of off-chip commutation. The proposed accelerator can be used

in power-constrained edge devices to enable real-time augment reality applica-

tions for natural scene understanding.

83

• Algorithm solutions: For BNN compression solutions, we first propose a

novel flow to explore the redundancy of BNN and remove the redundancy by

bit-level sensitivity analysis and data pruning (Chapter 5). In order to build a

compact BNN, one should follow these three steps. Specifically, first reconstruct

a BNN with bit-sliced input and non-binary 1st layer. Then, inject randomly

binarized bit slices to analyze the sensitivity level of each bit slice to the clas-

sification error rate. After that, prune P accuracy insensitive bit slices out of

total N slices and rebuild a CBNN with depth shrunk by (N/P) times in each

layer. Alternatively, one can adopt the proposed pruning method tailored to

BNNs, which uses flipping frequency as an indicator of sensitivity to accuracy

(Chapter 6). The experiments illustrate that BNNs can be further pruned by

using weight flipping frequency as an indicator of sensitivity to accuracy. For an

application-specific solution, we propose a light-weight RetinaNet model that

has a constantly better FLOP-mAP trade-off curve (linear degradation) than a

naive input image scaling approach (polynomial degradation) (Chapter 7). The

key is to substitute the heaviest bottleneck layer of blockwise-FLOP-imbalance

RetinaNet with simplified building blocks, while keeping the rest of the network

untouched. The proposed method can be potentially applied to any FPN-based

detection network that has imbalanced blockwise FLOP distribution for an im-

proved FLOP-mAP trade-off, with more energy-efficient inference at the edge.

The proposed solutions also open up several new directions for future work. The

idea of substituting the heaviest bottleneck layer with simplified building blocks has

been proven to be feasible for a better FLOP-mAP tradeoff in blockwise-FLOP-

imbalance RetinaNet. If this method can be generalized to a large portion of networks,

it will be a useful criteria in both manually tuning the network hyperparameters or

automated neural network architecture search. Moreover, it is also worthy exploring

84

how to formulate a metric to measure the redundancy of each layer. A layer is not

just an independent layer. It is a part of a network. Its contiguous layers or even the

entire network topology can effect the redundancy level of a certain layer. All these

factors are worthy exploring in the future work.

85

REFERENCES

Andri, R., L. Cavigelli, D. Rossi and L. Benini, “Yodann: An architecture for ultralow
power binary-weight cnn acceleration”, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 37, 1, 48–60 (2018).

Badrinarayanan, V., A. Kendall and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation”, IEEE transactions on pat-
tern analysis and machine intelligence 39, 12, 2481–2495 (2017).

Biookaghazadeh, S., M. Zhao and F. Ren, “Are fpga suitable for edge computing?”, in
“{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18)”, (2018).

Bissacco, A., M. Cummins, Y. Netzer and H. Neven, “Photoocr: Reading text in
uncontrolled conditions”, in “Computer Vision (ICCV), 2013 IEEE International
Conference on”, pp. 785–792 (IEEE, 2013).

Bong, K., S. Choi, C. Kim, S. Kang, Y. Kim and H.-J. Yoo, “14.6 a 0.62 mw ultra-
low-power convolutional-neural-network face-recognition processor and a cis inte-
grated with always-on haar-like face detector”, in “Solid-State Circuits Conference
(ISSCC), 2017 IEEE International”, pp. 248–249 (IEEE, 2017).

Carreira-Perpinán, M. A. and Y. Idelbayev, “”learning-compression” algorithms for
neural net pruning”, in “Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition”, pp. 8532–8541 (2018).

Chen, Y.-H., T. Krishna, J. S. Emer and V. Sze, “Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks”, IEEE Journal of
Solid-State Circuits 52, 1, 127–138 (2017).

Cheng, Y., F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary and S.-F. Chang, “An
exploration of parameter redundancy in deep networks with circulant projections”,
in “Proceedings of the IEEE International Conference on Computer Vision”, pp.
2857–2865 (2015).

Computing, F., “Fog computing and the internet of things: Extend the cloud to
where the things are”, (2016).

Courbariaux, M., Y. Bengio and J.-P. David, “Binaryconnect: Training deep neu-
ral networks with binary weights during propagations”, in “Advances in neural
information processing systems”, pp. 3123–3131 (2015).

De Campos, T. E., B. R. Babu, M. Varma et al., “Character recognition in natural
images.”, VISAPP (2) 7 (2009).

86

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database”, in “Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on”, pp. 248–255 (IEEE, 2009).

Desoli, G., N. Chawla, T. Boesch, S.-p. Singh, E. Guidetti, F. De Ambroggi, T. Majo,
P. Zambotti, M. Ayodhyawasi, H. Singh et al., “14.1 a 2.9 tops/w deep convolutional
neural network soc in fd-soi 28nm for intelligent embedded systems”, in “Solid-State
Circuits Conference (ISSCC), 2017 IEEE International”, pp. 238–239 (IEEE, 2017).

Dua, A., Hardware Acceleration of Video Analytics on FPGA Using OpenCL, Ph.D.
thesis, Arizona State University (2019).

Farabet, C., B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y. LeCun, “Neu-
flow: A runtime reconfigurable dataflow processor for vision.”, in “CVPR Work-
shops”, pp. 109–116 (2011).

Girshick, R., I. Radosavovic, G. Gkioxari et al., “Detectron”,
https://github.com/facebookresearch/detectron (2018).

Goodfellow, I., Y. Bengio, A. Courville and Y. Bengio, Deep learning, vol. 1 (MIT
press Cambridge, 2016).

Goyal, P., P. Dollár, R. Girshick et al., “Accurate, large minibatch sgd: Training
imagenet in 1 hour”, arXiv preprint arXiv:1706.02677 (2017).

Guo, P., H. Ma, R. Chen, P. Li, S. Xie and D. Wang, “Fbna: A fully binarized
neural network accelerator”, in “2018 28th International Conference on Field Pro-
grammable Logic and Applications (FPL)”, pp. 51–513 (IEEE, 2018).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, International
Conference on Learning Representations (2016).

Han, S., J. Pool, J. Tran and W. Dally, “Learning both weights and connections for
efficient neural network”, in “Advances in neural information processing systems”,
pp. 1135–1143 (2015).

He, K., G. Gkioxari, P. Dollár et al., “Mask r-cnn”, in “Proceedings of the IEEE
international conference on computer vision”, pp. 2961–2969 (2017).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on computer vision and pattern recogni-
tion”, pp. 770–778 (2016).

Howard, A. G., M. Zhu, B. Chen et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications”, arXiv preprint arXiv:1704.04861 (2017).

87

Huang, J., V. Rathod, C. Sun et al., “Speed/accuracy trade-offs for modern convo-
lutional object detectors”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 7310–7311 (2017).

Hubara, I., M. Courbariaux, D. Soudry, R. El-Yaniv and Y. Bengio, “Binarized neural
networks”, in “Advances in neural information processing systems”, pp. 4107–4115
(2016).

Inference, G.-B. D. L., “A performance and power analysis”, Whitepaper, November
(2015).

Ioffe, S. and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167 (2015).

Jacob, B., S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam and
D. Kalenichenko, “Quantization and training of neural networks for efficient integer-
arithmetic-only inference”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 2704–2713 (2018).

Jaderberg, M., A. Vedaldi and A. Zisserman, “Deep features for text spotting”, in
“European conference on computer vision”, pp. 512–528 (Springer, 2014).

Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit”, in “2017 ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA)”, pp. 1–12 (IEEE, 2017).

Krizhevsky, A., G. Hinton et al., “Learning multiple layers of features from tiny
images”, Tech. rep., Citeseer (2009).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in “Advances in neural information processing sys-
tems”, pp. 1097–1105 (2012).

LeCun, Y., Y. Bengio and G. Hinton, “Deep learning”, nature 521, 7553, 436 (2015).

LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied
to document recognition”, Proceedings of the IEEE 86, 11, 2278–2324 (1998).

Li, Y., Z. Liu, K. Xu, H. Yu and F. Ren, “A 7.663-tops 8.2-w energy-efficient fpga
accelerator for binary convolutional neural networks”, in “Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays”, pp.
290–291 (ACM, 2017).

Li, Y., Z. Liu, K. Xu, H. Yu and F. Ren, “A gpu-outperforming fpga accelerator
architecture for binary convolutional neural networks”, ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14, 2, 18 (2018).

88

Lin, J.-H., T. Xing, R. Zhao, Z. Zhang, M. B. Srivastava, Z. Tu and R. K. Gupta, “Bi-
narized convolutional neural networks with separable filters for efficient hardware
acceleration.”, in “CVPR Workshops”, pp. 344–352 (2017a).

Lin, M., Q. Chen and S. Yan, “Network in network”, arXiv preprint arXiv:1312.4400
(2013).

Lin, T.-Y., P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature
pyramid networks for object detection”, in “Proceedings of the IEEE conference
on computer vision and pattern recognition”, pp. 2117–2125 (2017b).

Lin, T.-Y., P. Goyal, R. Girshick, K. He and P. Dollár, “Focal loss for dense ob-
ject detection”, in “Proceedings of the IEEE international conference on computer
vision”, pp. 2980–2988 (2017c).

Lin, T.-Y., M. Maire, S. Belongie et al., “Microsoft coco: Common objects in con-
text”, in “European conference on computer vision”, pp. 740–755 (Springer, 2014).

Lin, X., C. Zhao and W. Pan, “Towards accurate binary convolutional neural net-
work”, in “Advances in Neural Information Processing Systems”, pp. 345–353
(2017d).

Liu, W., D. Anguelov, D. Erhan et al., “Ssd: Single shot multibox detector”, in
“European conference on computer vision”, pp. 21–37 (Springer, 2016).

Liu, Z., Y. Li, F. Ren, W. L. Goh and H. Yu, “Squeezedtext: A real-time scene
text recognition by binary convolutional encoder-decoder network”, Thirty-Second
AAAI Conference on Artificial Intelligence (2018a).

Liu, Z., M. Sun, Y. Zhou et al., “Rethinking the value of network pruning”, arXiv
preprint arXiv:1810.05270 (2018b).

Luo, J.-H., J. Wu and W. Lin, “Thinet: A filter level pruning method for deep neural
network compression”, in “Proceedings of the IEEE international conference on
computer vision”, pp. 5058–5066 (2017).

Molchanov, P., A. Mallya, S. Tyree, I. Frosio and J. Kautz, “Importance estimation
for neural network pruning”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 11264–11272 (2019).

Moons, B. and M. Verhelst, “A 0.3–2.6 tops/w precision-scalable processor for real-
time large-scale convnets”, in “VLSI Circuits (VLSI-Circuits), 2016 IEEE Sympo-
sium on”, pp. 1–2 (IEEE, 2016).

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning”, in “NIPS workshop on deep
learning and unsupervised feature learning”, vol. 2011, p. 5 (2011).

89

Ouyang, J., S. Lin, W. Qi, Y. Wang, B. Yu and S. Jiang, “Sda: Software-defined
accelerator for large-scale dnn systems”, in “2014 IEEE Hot Chips 26 Symposium
(HCS)”, pp. 1–23 (IEEE, 2014).

Pham, P.-H., D. Jelaca, C. Farabet, B. Martini, Y. LeCun and E. Culurciello,
“Neuflow: Dataflow vision processing system-on-a-chip”, in “Circuits and Systems
(MWSCAS), 2012 IEEE 55th International Midwest Symposium on”, pp. 1044–
1047 (IEEE, 2012).

Qiu, J., J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., “Going deeper with embedded fpga platform for convolutional neural net-
work”, in “Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays”, pp. 26–35 (ACM, 2016).

Rahmani, M., A. Ghanbari and M. M. Ettefagh, “Hybrid neural network fraction inte-
gral terminal sliding mode control of an inchworm robot manipulator”, Mechanical
Systems and Signal Processing 80, 117–136 (2016).

Rahmani, M., A. Ghanbari and M. M. Ettefagh, “A novel adaptive neural network
integral sliding-mode control of a biped robot using bat algorithm”, Journal of
Vibration and Control 24, 10, 2045–2060 (2018).

Rastegari, M., V. Ordonez, J. Redmon and A. Farhadi, “Xnor-net: Imagenet classi-
fication using binary convolutional neural networks”, in “European Conference on
Computer Vision”, pp. 525–542 (Springer, 2016).

Redmon, J., S. Divvala, R. Girshick et al., “You only look once: Unified, real-time
object detection”, in “Proceedings of the IEEE conference on computer vision and
pattern recognition”, pp. 779–788 (2016).

Redmon, J. and A. Farhadi, “Yolo9000: better, faster, stronger”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 7263–7271
(2017).

Redmon, J. and A. Farhadi, “Yolov3: An incremental improvement”, arXiv preprint
arXiv:1804.02767 (2018).

Ren, S., K. He, R. Girshick et al., “Faster r-cnn: Towards real-time object detection
with region proposal networks”, in “Advances in neural information processing
systems”, pp. 91–99 (2015).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014).

Stallkamp, J., M. Schlipsing, J. Salmen and C. Igel, “The german traffic sign recogni-
tion benchmark: a multi-class classification competition”, in “Neural Networks

90

(IJCNN), The 2011 International Joint Conference on”, pp. 1453–1460 (IEEE,
2011).

Stillmaker, A. and B. Baas, “Scaling equations for the accurate prediction of cmos
device performance from 180 nm to 7 nm”, Integration 58, 74–81 (2017).

Suda, N., V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo and
Y. Cao, “Throughput-optimized opencl-based fpga accelerator for large-scale convo-
lutional neural networks”, in “Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays”, pp. 16–25 (ACM, 2016).

Tang, W., G. Hua and L. Wang, “How to train a compact binary neural network with
high accuracy?”, in “AAAI”, pp. 2625–2631 (2017).

Tu, F., S. Yin, P. Ouyang, S. Tang, L. Liu and S. Wei, “Deep convolutional neural net-
work architecture with reconfigurable computation patterns”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 25, 8, 2220–2233 (2017).

Wang, T., D. J. Wu, A. Coates and A. Y. Ng, “End-to-end text recognition with
convolutional neural networks”, in “Pattern Recognition (ICPR), 2012 21st Inter-
national Conference on”, pp. 3304–3308 (IEEE, 2012).

Yu, J., “Xnor-net”, https://github.com/jiecaoyu/XNOR-Net-PyTorch (2019).

Yu, R., A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin
and L. S. Davis, “Nisp: Pruning networks using neuron importance score propaga-
tion”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition”, pp. 9194–9203 (2018).

Zhang, C., P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, “Optimizing fpga-based ac-
celerator design for deep convolutional neural networks”, in “Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays”, pp. 161–170 (ACM, 2015).

Zhang, D., J. Yang, D. Ye and G. Hua, “Lq-nets: Learned quantization for highly
accurate and compact deep neural networks”, in “Proceedings of the European
Conference on Computer Vision (ECCV)”, pp. 365–382 (2018a).

Zhang, T., K. Zhang, S. Ye, J. Li, J. Tang, W. Wen, X. Lin, M. Fardad and Y. Wang,
“Adam-admm: A unified, systematic framework of structured weight pruning for
dnns”, arXiv preprint arXiv:1807.11091 (2018b).

Zhang, X., S. Das, O. Neopane and K. Kreutz-Delgado, “A design methodology for
efficient implementation of deconvolutional neural networks on an fpga”, arXiv
preprint arXiv:1705.02583 (2017).

91

Zhao, R., W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta and
Z. Zhang, “Accelerating binarized convolutional neural networks with software-
programmable fpgas”, in “Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays”, pp. 15–24 (ACM, 2017).

Zhu, C., S. Han, H. Mao and W. J. Dally, “Trained ternary quantization”, arXiv
preprint arXiv:1612.01064 (2016).

92

