
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 4, DECEMBER 2014 73

A Square-Root-Free Matrix Decomposition Method
for Energy-Efficient Least Square Computation on

Embedded Systems
Fengbo Ren, Chenxin Zhang, Liang Liu, Wenyao Xu, Viktor Öwall, and Dejan Marković

Abstract—QR decomposition (QRD) is used to solve least-
squares (LS) problems for a wide range of applications. However,
traditional QR decomposition methods, such as Gram–Schmidt
(GS), require high computational complexity and nonlinear
operations to achieve high throughput, limiting their usage on
resource-limited platforms. To enable efficient LS computation
on embedded systems for real-time applications, this paper
presents an alternative decomposition method, called QDRD,
which relaxes system requirements while maintaining the same
level of performance. Specifically, QDRD eliminates both the
square-root operations in the normalization step and the divisions
in the subsequent backward substitution. Simulation results show
that the accuracy and reliability of factorization matrices can be
significantly improved by QDRD, especially when executed on
precision-limited platforms. Furthermore, benchmarking results
on an embedded platform show that QDRD provides constantly
better energy-efficiency and higher throughput than GS-QRD
in solving LS problems. Up to 4 and 6.5 times improvement in
energy-efficiency and throughput, respectively, can be achieved
for small-size problems.

Index Terms—Computational complexity, energy efficiency,
least-squares problem, matrix factorization, QR decomposition.

I. INTRODUCTION

Q R DECOMPOSITION (QRD) is one of the most
widely used matrix factorization techniques for solving
least-squares (LS) problems in various applications.

Because of its practical importance, enormous algorithmic ef-
forts have been made to improve energy efficiency and routine
performance of QRD over the past few decades, especially
from a very large scale integration (VLSI) design point of
view. Two hardware-friendly methods for computing QRD
are commonly used in practice. Givens rotation (GR) offers
a low-cost computation method by handling one element of

Manuscript received May 30, 2014; accepted August 18, 2014. Date of publi-
cation August 22, 2014; date of current version November 20, 2014. This man-
uscript was recommended for publication by A. Coskun
F. Ren and D. Marković are with the Department of Electrical Engi-

neering, University of California, Los Angeles, CA 90095 USA (e-mail:
renfengbo@ucla.edu; dejan@ee.ucla.edu).
C. Zhang, L. Liu, and V. Öwall are with the Department of Electrical and In-

formation Technology, LundUniversity, Lund 221 00, Sweden (e-mail: chenxin.
zhang@eit.lth.se; Liang.Liu@eit.lth.se; Viktor.Owall@eit.lth.se).
W. Xu is with the Department of Computer Science and Engineering, State

University of New York at Buffalo, Buffalo, NY 14260 14214 USA (e-mail:
wenyaoxu@buffalo.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LES.2014.2350997

a matrix at a time with only additions and table look-ups
involved. However, the inherent sequential processing of GR
limits its applications with stringent real-time requirements
[1]. Alternatively, the Gram–Schmidt (GS) algorithm allows
parallel computations with higher processing throughput by
factorizing a matrix at the vector-level. Therefore, GS-QRD
is often in favor for throughput-driven applications, where the
parallelization of computations is desired [2], [3].
However, neither of the above methods are ideal for real-time

implementations on embedded systems. Due to limited memory
and computation resources available on such platforms,
GR-QRD will have limited throughput while GS-QRD will
face design challenges on precision loss and energy-efficiency
[1]–[4]. Prior analysis has revealed that nonlinear operations
in GS-QRD, namely square-root operations and divisions,
are the primary cause of the aforementioned design issues
[2]. Nonlinear operations are not cost-effective for an explicit
implementation, and they are usually the accuracy bottleneck
of the overall system. Most existing work implements non-
linear operations using iterative approximation methods, such
as Newton–Raphson, with word-length optimization applied
[2]–[4]. Nonetheless, these methods trade computational com-
plexity with throughput or accuracy, which is not desired for
real-time applications.
In this paper, we tackle the abovementioned issues jointly by

deriving an alternative QDR decomposition (QDRD) method
that has both the throughput advantage of GS-QRD and the in-
trinsic square-root-free feature of GR-QRD. Specifically, a new
diagonal factorization matrix is introduced as the scaling
factor to exclude the normalization process of orthogonal basis.
As a result, both the square-root operations and the divisions
in the backward substitution for solving LS problems are elim-
inated. To the best of our knowledge, a similar idea has been
suggested in [5] while this is the first paper that analyzes and
evaluates its performance for LS computation based on hard-
ware implementation results.

II. THE QDRD METHOD FOR SOLVING LS PROBLEMS

A LS problem is formulated as finding an that gives

(1)

where (usually) and . If has a
zero-null space, the solution to (1) can be computed by solving
the normal equation given as

(2)

1943-0663 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

74 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 4, DECEMBER 2014

According to QRD, a matrix with a zero-null
space can be decomposed as

(3)

where is an orthonomal matrix with (
is identity matrix) and is an upper-triangular

matrix with positive diagonal elements. By substituting with
(3), (2) becomes

(4)

Since is an upper-triangular matrix, (4) can be solved by
using backward substitution.
Note that in GS-QRD, square-root operations are required for

computing the diagonal elements of , , as Euclidean
norms [2]. In addition, the column of and the row of
(except for the diagonal elements) is normalized by the

element of , respectively. Therefore, there must exist
a diagonal matrix with , and
unnormalized matrices and that satisfy

and , where serves as a normalizer
for both and . According to this, (4) can be formulated as

(5)

Note that the normalizer appears on both sides of (5)
and cancels each other, which indicates that the normalization
of factorization matrices in QRD is essentially redundant for
solving LS problems. Therefore, the square-root operations
involved in the normalization process are also redundant.

A. Square-Root-Free QDRD

Based on the above analysis, we propose an alternative fac-
torization method that essentially eliminates the square-root op-
erations by removing the normalizer from both and in (3)
as . By defining

, , and , we
derive the QDRD of a matrix that has a zero-null
space as

(6)

where is an orthogonal matrix, is a
diagonal matrix, and is an upper-triangular matrix.
The new factorization matrices have several important prop-

erties. Since is a diagonal matrix, we can derive

(7)

Equation (7) indicates that is an orthogonal matrix, which
can be normalized by as

(8)

Additionally, from and ,
we must have , meaning the diagonal elements of
must be all unit ones.
The QDRD of shown in (6) can be computed

column-wise in iterations. In each iteration, (6) can be parti-
tioned as

(9)

Fig. 1. Illustrations of (a) the QRD and (b) the QDRD of a matrix.

where is the column vector of and ,
is a row vector of , is a scalar element

of , respectively. Given that and
are known submatrices from the

previous iteration, the unknown variables , , and
can be derived as follows. According to (7), we know that

(10)

and

(11)

In addition, by expanding (9) we have

(12)

and

(13)

Therefore, from (10) and (12), can be derived as
, and can be calculated as

. can be derived by multiplying both sides
of (13) by as

(14)

Inserting (10) and (11), (14) can be simplified to
. As indicated by (13), the QDRD of the next iteration is

given by

(15)

Note that by introducing the new factorization matrix
to avoid the normalization process, the proposed QDRD

method completely eliminates the square-root operations. To
better explain this concept in comparison to QRD, the two dif-
ferent matrix decompositions of a matrix are illustrated
using 2-D vectors in Fig. 1. Note that the basis vectors in QRD
() are always orthonormal, while those in QDRD () are
scaled by and no longer normalized.

B. Solving LS Problems using QDRD

To solve LS problems using the proposed QDRDmethod, the
normal equation in (2) can be substituted by (6) and simplified
according to (8) as

(16)

then solved through backward substitution. Equation (16) also
indicates that solving LS problems only requires finding the
directions of the orthogonal basis of , regardless of the nor-
malization of their Euclidean norms. Therefore, the introduced

REN et al.: A SQUARE-ROOT-FREE MATRIX DECOMPOSITION METHOD 75

scaling factor in QDRD can be disregarded in the backward
substitution. Moreover, since the diagonal elements of are
all unit ones in QDRD, the divisions required in the backward
substitution in (16) can be safely eliminated.

III. MATRIX FACTORIZATION PERFORMANCE ANALYSIS

In general, two characteristics of the factorization matrices
are critical to the numerical accuracy of the solutions to LS
problems. One is how well the factorization matrices can
reconstruct the original matrix . The other is how close the
transpose of the orthogonal matrix is to its inverse. In this study,
we define two new generic metrics to quantify both of the cri-
teria. The reconstruction signal to noise ratio (RSNR) for QRD

and QDRD is defined as ,

and , respec-

tively, where the operator denotes the Frobenius
norm of a matrix. Note that RSNR measures the recon-
struction error of the factorization matrices relative to the
original matrix as the ratio of ’s energy over that of the
reconstruction error. Using a similar concept, the orthog-
onality signal to noise ratio (OSNR) for QRD and QDRD

is defined as , and

, respectively.

Ideally, if infinite precision can be preserved during matrix
factorization, both OSNR and RSNR should approach positive
infinity. In practice, both metrics are subject to quantization
noise. Given a fixed machine precision, higher OSNR and
RSNR performance indicates the superiority of the factoriza-
tion method in terms of accuracy and reliability.
Matrix factorization experiments are carried out in MATLAB

using double precision in order to compare the performance of
QDRD against GS-QRD. The input matrices are
randomly generated for different sizes ranging from 10 to 100
with an aspect ratio of . For each matrix size, 1000
trials are performed using Gaussian random matrices. The im-
pact of the precision of nonlinear operations is investigated by
injecting rounding errors at different precision—their results are
rounded to different number of significant bits (ranging from
10 to 52 bits). Besides, all linear operations are performed with
the highest precision to exclude their effects in the analysis.
Note that the upper bound of the precision is limited by the
word-length of the mantissa in double precision.
Fig. 2 shows the comparison results measured from general

matrix factorizations. The RSNR and OSNR gain of QDRD
(over GS-QRD) is calculated as
and , respectively. Note that both
results are averaged across all matrix sizes. Figure 2(a) shows
that QDRD provides nearly the same RSNR performance as
GS-QRD, indicating the independence of RSNR performance
on the precision of square-root operations. On the other hand,
QDRD is able to achieve significant OSNR gain, especially
when the precision of square-root operations dominates the
overall OSNR performance (). It is because the
rounding errors of square-root operations can be accumulated
in GS-QRD over iterations, which deteriorates its OSNR as a
dominating factor. On the contrary, QDRD is square-root-free,
and thereby its OSNR will not have such precision loss.
Overall, QDRD is guaranteed to provide more accurate results

Fig. 2. Average (a) RSNR and (b) OSNR gain of QDRD over GS-QRD with
respect to the word-length of square-root () and divisions ().

than GS-QRD when nonlinear operations are performed given
precision constraints.

IV. EVALUATION OF LS COMPUTATION ON EMBEDDED
SYSTEMS

In order to evaluate the performance of LS computation
on embedded systems, we implemented the LS solver on an
ultra-low-power MSP430 microprocessor using GS-QRD and
QDRD, respectively. Based on the results, we analyze and
compare the computational complexity and the throughput of
the two methods. Potential applications are also discussed.

A. Experimental Platform

The embedded platform is equipped with an ultra-low-power
16-bit RISC MSP430F2274 microprocessor. The system has a
supply voltage of 3.3 V and an operation frequency of 1 MHz.
The computational resources in the hardware include a cus-
tomized 16-bit multiplier and an arithmetic logical unit (ALU)
that contains a 16-bit full adder. The microprocessor has a 256
Kb local register file with external access to a 1 KB RAM and
a 32 KB Flash memory. Overall, 27 instructions and seven ad-
dressing modes are supported.

B. Computational Complexity Analysis

To simplify the analysis, we approximate the computational
complexity by normalizing different operations to that of a 1-bit
addition. Note that the complexity here refers to the hardware
cost and indicates the energy consumption rather than the speed
of the operation. Specifically, our analysis assumes that a -bit
addition has a complexity of and a -bit multiplication has
one of . Since only adder and multiplier are available, a -bit
division is given a complexity of , assuming the
Newton-Raphson method is used to approximate by
computing in iterations with a given
initial value . Similarly, a -bit square-root operation has a
complexity of assuming is ap-
proximated by computing using the same
method.
Based on the above models, Table I summarizes the overall

computational complexity of solving a LS problem using
GS-QRD and QDRD, respectively, on the embedded platform.
Both methods have the same operation count in terms of linear
operations and require additions and
multiplications for computing the matrix factorization shown
in (3) and (6), respectively. In addition, additions
and multiplications are involved in calculating the backward
substitution shown in (4) and (16). However, QDRD cuts down
significantly on the nonlinear operations required. Solving a
LS problem using GS-QRD requires square-root operations
and divisions, while only divisions with no square-root

76 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 4, DECEMBER 2014

TABLE I
THE COMPUTATIONAL COMPLEXITY OF SOLVING LS PROBLEMS

Fig. 3. Computational complexity of solving LS problems using QDRD with
different matrix sizes. The result is normalized to that of using GS-QRD as-
suming different iterations of the Newton–Raphson method.

operations are necessary for QDRD. Therefore, QDRD always
has a lower computational complexity than QRD. Moreover,
since the complexity also reflects the total energy consumption
of the hardware platform, QDRD is more energy-efficient for
solving LS problems.
Fig. 3 shows the computational complexity of solving LS

problems of different sizes by using QDRD in the case of
and . The complexity is normalized to that of GS-QRD
for comparison. Note that when higher precision is required,
more iterations of the Newton-Raphson method have to be
performed in GS-QRD. In contrast, QDRD is free of such pre-
cision loss, thereby leading to a larger complexity reduction as
increases. In addition, complexity reduction for QDRD be-

comes more prominent for small matrices, where the overall
complexity is less dominated by additions and multiplications.

C. Throughput Evaluation from Hardware Emulation

To investigate the algorithm performance in practice, we
implement both algorithms in C language and compile them
with the IAR Embedded Workbench tool [6] on MSP430F2274
for emulation. In the compiler settings, the optimization level
is set to high for both the C codes (function in-lining, in-
struction scheduling, common subexpression elimination, etc.,
are performed). Due to the loop-carried data dependency in
both algorithms, the computation in different loops cannot be
pipelined. Consequently, the hardware throughput is inversely
proportional to the execution time of the algorithm. Table II
summarizes the measured execution time of solving a single
LS problem at different sizes when and . In
this case, the number of clock cycles required to execute an
addition, multiplication, division, and square-root operation is
4, 6, 128, and 1056, respectively. Clearly, executing nonlinear
operations is orders of magnitude slower, and such overhead
degrades the performance. As shown in Table II, by eliminating
the square-root operations and alleviating divisions, QDRD is
able to provide constantly higher throughput than GS-QRD in
solving LS problems. Particularly, a speedup of 6.5 times can
be achieved for small-size problems .

TABLE II
THE EXECUTION TIME OF SOLVING A SINGLE LS PROBLEM

D. Potential Applications

Many real-life applications of LS problems can benefit
from using QDRD, especially when implemented on resource-
or energy-limited platforms. Multiple-input–multiple-output
(MIMO) communication is one of such applications, where a
small-size LS problem (depending on the antenna count) needs
to be solved for signal detection [1]. As the MIMO technique
has been adopted in modern wireless standards, using QDRD
can benefit the low-power communication systems. For in-
stance, in an 4-antenna MIMO system , up to
4 times better energy-efficiency and higher throughput can be
achieved compared to GS-QRD (see Fig. 3 and Table II). Other
application examples include the real-time curve-fitting used
in control systems, such as motion controllers [7]. In these
applications, the size of LS problems is limited by the number
of fitting parameters and data samples. Adopting QDRD can
potentially improve the battery life and real-time performance
of such applications.

V. CONCLUSION

Square-root operations required in QRD are intrinsically re-
dundant for solving LS problems. To enable efficient LS com-
putation on embedded systems for real-time applications, this
paper presents an alternative QDRD method that relaxes the
system requirements to achieve high throughput. Simulation re-
sults confirm that QDRD provides more accurate and reliable
results than GS-QRD for general matrix factorizations. Further-
more, benchmarking results based on an MSP430 micropro-
cessor testbed show that, due to complexity reduction of non-
linear operations, QDRD provides constantly better energy-effi-
ciency and higher throughput than GS-QRD in solving LS prob-
lems. More specifically, up to 4 and 6.5 times improvement in
energy efficiency and throughput, respectively, can be achieved
for small-size problems.

REFERENCES
[1] Y.-H. Zheng et al., “Efficient implementation of QR decomposition

for gigabit MIMO-OFDM systems,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 58, no. 10, pp. 2531–2542, Oct. 2011.

[2] P. Luethi et al., “Gram-Schmidt-Based QR decomposition for MIMO
detection: VLSI implementation and comparison,” in Proc. IEEE Asia
Pacific Conf. Circuits Syst., Nov. 2008, pp. 830–833.

[3] S. Aslan, “Realization of area efficient QR factorization using uni-
fied division, square-root, and inverse square-root hardware,” in Proc.
IEEE Int. Conf. Electr. Inf. Technol., Jun. 2009, pp. 245–250.

[4] B. Gestner, “VLSI implementation of a lattice reduction algorithm for
low-complexity equalization,” in Proc. IEEE Int. Conf. Circuits Syst.
Commun., May 2008, pp. 643–647.

[5] Å. Björck, “Numerical methods for least square problems,” SIAM, p.
62, 1996.

[6] “IAR Embedded Workbench for TI MSP430,” [Online]. Avail-
able: http://www.iar.com/Products/IAR-Embedded-Workbench/TI-
MSP430/

[7] J.-B. Wang et al., “Universal Real-Time NURBS interpolator on a
PC-Based Controller,” Int. J. Adv. Manufacturing Technol., vol. 71,
no. 1–4, pp. 297–507, Mar. 2014.

