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ABSTRACT

With the exponential growth in video content over the period of the last few years,

analysis of videos is becoming more crucial for many applications such as self-driving

cars, healthcare, and traffic management. Most of these video analysis application

uses deep learning algorithms such as convolution neural networks (CNN) because

of their high accuracy in object detection. Thus enhancing the performance of CNN

models become crucial for video analysis. CNN models are computationally-expensive

operations and often require high-end graphics processing units (GPUs) for acceler-

ation. However, for real-time applications in an energy-thermal constrained environ-

ment such as traffic management, GPUs are less preferred because of their high power

consumption, limited energy efficiency. They are challenging to fit in a small place.

To enable real-time video analytics in emerging large scale Internet of things (IoT)

applications, the computation must happen at the network edge (near the cameras) in

a distributed fashion. Thus, edge computing must be adopted. Recent studies have

shown that field-programmable gate arrays (FPGAs) are highly suitable for edge

computing due to their architecture adaptiveness, high computational throughput

for streaming processing, and high energy efficiency.

This thesis presents a generic OpenCL-defined CNN accelerator architecture op-

timized for FPGA-based real-time video analytics on edge. The proposed CNN

OpenCL kernel adopts a highly pipelined and parallelized 1-D systolic array archi-

tecture, which explores both spatial and temporal parallelism for energy efficiency

CNN acceleration on FPGAs. The large fan-in and fan-out of computational units

to the memory interface are identified as the limiting factor in existing designs that

causes scalability issues, and solutions are proposed to resolve the issue with com-

piler automation. The proposed CNN kernel is highly scalable and parameterized

by three architecture parameters, namely pe num, reuse fac, and vec fac, which can
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be adapted to achieve 100% utilization of the coarse-grained computation resources

(e.g., DSP blocks) for a given FPGA. The proposed CNN kernel is generic and can be

used to accelerate a wide range of CNN models without recompiling the FPGA ker-

nel hardware. The performance of Alexnet, Resnet-50, Retinanet, and Light-weight

Retinanet has been measured by the proposed CNN kernel on Intel Arria 10 GX1150

FPGA. The measurement result shows that the proposed CNN kernel, when mapped

with 100% utilization of computation resources, can achieve a latency of 11ms, 84ms,

1614.9ms, and 990.34ms for Alexnet, Resnet-50, Retinanet, and Light-weight Reti-

nanet respectively when the input feature maps and weights are represented using

32-bit floating-point data type.
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Chapter 1

INTRODUCTION

Over the past few years, there have been many groundbreaking advancements in

the field of deep learning. Numerous applications from different domains such as

autonomous, medical, finance have adopted deep learning algorithms. Deep learning

algorithms are even beating humans in different activities, as has been shown by

the Alphabets deep mind alphago,[1] which defeated Go game grandmaster. Google

translator, based on a recurrent neural network [2], translating multiple languages at

high accuracy, is one of the success stories of the deep learning algorithms. However,

the increase in accuracy comes at the cost of the increase in computation complexity

and memory requirement. When Alexnet [3] was introduced in 2012, it requires 0.7

GFLOPS to perform image classification, which increased to 11 GFLOPS for Resnet-

152 [4], which is an increase in computational complexity by almost 15 times to

improve the accuracy of classifying an image by 12%.

Deep learning algorithms implementation can be divided into two phases. One is

training, and the other is inference. For a given deep learning model, training of the

model is typically done offline to define weights and is a one-time effort. So, training

time is not a concern for real-time applications. However, the inference is where the

application uses the deep learning models for the classification of real data; hence,

the inference run time becomes a crucial parameter in determining the performance

of the deep learning model.

The critical performance metrics to measure the performance of a real-time ap-

plication, which uses the deep-learning algorithm as its backbone, includes latency

and energy efficiency. Latency and energy efficiency depends on the model and hard-
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ware selected to map deep learning algorithms. Graphics processing units (GPUs)

having thousands of computing units, high memory bandwidth (GB/s), and running

at a high frequency (in GHz) delivers high throughput when processing a batch of

multiple images in parallel. GPU hardware is optimized to provide high-throughput

for batch processing. However, for real-time applications that require the processing

of streaming data at low latency and high energy efficiency, GPUs are not the ideal

hardware [5].

Some research work has focused on developing custom application-specific in-

tegrated circuits (ASICs) based accelerator [6] for the deep learning algorithms to

achieve high energy efficiency and low latency. However, ASICs are not flexible enough

to keep up with the changes in deep learning algorithms. Also, the long design verifi-

cation and fabrication time add to the disadvantages of using ASICs as the accelerator

for deep learning algorithms. Recent studies [7], [8] have shown Field Programmable

Gate Array (FPGAs) offering lower power consumption (therefore higher energy effi-

ciency) as compared to GPUs for accelerating many applications at the cost of lower

throughput. For example, [8] has shown Intel Arria 10 GX1150 FPGA achieving 4

times higher energy efficiency as compared to Tesla K40C GPU while the computing

performance of FPGA is 0.3 times of GPU. FPGAs also offers more hardware flexi-

bility and reduces the time to develop accelerator as compared to ASICs. So, higher

energy efficiency and flexibility motivated us to design a convolution neural network

(CNN) accelerator using FPGAs for this thesis.

1.1 Related Work

FPGAs offers high hardware flexibility and energy efficiency that have attracted

many research teams to use FPGAs for accelerating CNN inference. [9] shows the

computing power of FPGAs by achieving a throughput of over 1.3 TFLOPS. The
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conventional method of programming FPGAs relies on designing at Register-transfer

level (RTL), which allows fine-tuning of resource utilization to improve the perfor-

mance of computing units and energy efficiency, as has been shown by [10]. But

verification of design requires verifying functionality and timing issues, that adds to

the design development cycle. High-level synthesis tools provided by FPGAs vendors

such as Intel FPGA SDK for OpenCL enables faster verification of the design and

hence decreases the design development cycle. [9], [11] designs have shown achieving

high performance by programming FPGA using OpenCL.

Several proposed FPGA frameworks offer limited design flexibility [12] [13]. For

example, [12] is designed for accelerating the YOLO CNN model [14], so the resource

utilization is highly optimized for a particular CNN model, but the same design

cannot be used for accelerating different CNN models. This reduces the flexibility

of the design and increases the design effort to re-analyze and accelerate other CNN

models. Many existing FPGA CNN accelerators fail to fully utilize all the available

computing units [15], [16], which reveals scalability issues that exist in the design,

which leads to reduced performance. To address the issue of scaling up the design, [17]

discusses the advantages of adopting systolic array architecture [18]. [11] adopts 2-d

systolic array architecture to achieve high frequency, scale up the design to maximize

the utilization of the computing units, and achieve high performance. However, [11]

fails to achieve 100% of computing unit utilization due to the high fan-in and fan-out

issues that they fail to resolve completely.

1.2 Contributions

In this thesis, we mainly focused on the accelerating inference phase CNNs. After

analyzing the shortcomings of the current work, as discussed in Section 1.1, we propose

solutions to achieve higher performance. Key contributions of our CNN accelerator
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design are encapsulated in the following.

• We optimize the throughput of the CNN models by implementing a highly

pipelined 1-D systolic array architecture for convolution.

• We parameterize OpenCL design to enable design space exploration. This would

enable the design to scale up and maximize the utilization of computing power.

• We optimize the external memory bandwidth utilization by reducing the fre-

quency of external memory access. To reduce the external memory access, we

implement loop tiling.

• We provide solutions for resolving high fan-in and fan-out issues to increase the

scalability of the design.

• We generalized our CNN accelerator design to make it compatible with different

CNN architectures. This makes our design more user-friendly and reduces the

hardware design effort.

1.3 Thesis Organization

This thesis is divided into multiple chapters to explain various aspects of the

CNN accelerator design along with the experimental setup, performance results and

comparison with the state-of-the-art CNN accelerator designs.

• Chapter 2 gives essential background information about Deep learning. It de-

scribes different CNN layers and architecture that we used for our experiments.

This chapter also discusses OpenCL based FPGA computing.

• Chapter 3 explains various features of our design and proposes solutions to the

existing problem that we implement in our CNN accelerator design.
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• Chapter 4 describes the experimental setup, with a description of hardware and

software tools that we used to perform experiments.

• Chapter 5 provides an example of design space exploration based on the archi-

tectural parameters that we defined for our CNN accelerator design.

• Chapter 6 is where we present our result for four different CNN models, namely

Alexnet and Resnet-50, Retinanet and Light-weight retinanet, to show the flex-

ibility of our CNN accelerator design with variety of CNN models. We also

compare our results with the state-of-the-art CNN acclerator designs.

• Chapter 7 is the conclusion of our thesis.
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Chapter 2

BACKGROUND

In this chapter, we give a brief background of Deep-learning. Then we move on to

give basic information about the CNNs, which is the core operation of video-analytics.

After that brief introduction of OpenCL, a framework that we use for programming

FPGA.

2.1 Introduction to Deep Learning

Machine learning is a science that enables computers to work with real-data with-

out any explicit instructions. Machine learning-based applications learn from real

experiences and generate a statistical model that helps computers to classify random

input data received from the real world. The generation of a statistical model is called

the training phase. After the training phase is completed, which can take multiple

days to finish, this machine learning model is used for classifications. This phase of

classification is called the inference phase. For example, the machine learning model

trained for image-classification application is trained using a data-set of thousands of

images. In the inference phase, this model classifies images.

Machine learning is an umbrella term of which deep learning [19] is a part. The

artificial neural networks with multiple hidden layers generate a deep neural network.

An artificial Neural network imitates the brain by having many neurons that are

connected to form an acyclic graph that maps the input features to the output features

in a non-linear way. A Neural Network has multiple layers known as hidden layers

between input and output mapping that consists of multiple neurons. Each of these

hidden layers is responsible for extracting different features of the input data and
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sending processed data to the next layer. After the features of the object get extracted

by the hidden layers, such as the edges of an image, classifiers are used to identify

image class.

In the training phase of a neural network, each neuron is assigned weights and

bias through backward propagation functions such as gradient computing technique or

stochastic gradient descent (SGD) [20]. For the inference phase, results propagate in

the forward direction to the next layer only before they are sent to the classifier, which

performs either binary classification or regression. The following are the advantages

of using a deep neural network.

• High accuracy: Existing deep neural networks are achieving high accuracy.

With network presented by [21], surpassing humans in face verification, deep

neural networks are the ideal solutions to many applications such as image

classification.

• Knowledge transfer: Once the deep neural network is trained, it is used by

different applications working in the same domain for which that deep neural

network is trained. This is what we have exploited in our work by using the

open-source pre-trained deep neural network from the caffe2 framework [22].

2.2 CNN Architecture

The CNNs are the subcategory of deep learning, and designing an accelerator for

CNNs is the primary focus of this thesis work. Image classification based applications

mostly use CNNS. CNNs re-utilizes the weight across the input feature map to extract

the spatial dependencies between different pixel values of the input feature map. In

this thesis, we present the performance of the four CNN architecture, namely Alexnet

[3], Resnet-50 [4], Retinanet [23], and Light-weight retinanet [24] using propose CNN
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Figure 2.1: Architecture of Alexnet

accelerator design to demonstrate the compatibility of our design with a wide variety

of CNN architectures.

Alexnet [3], introduced in 2012 by the research team of the University of Toronto,

won the 2012 ImageNet LSVRC-2012 competition by achieving the maximum reduc-

tion in error rate by bringing error rate to 15.3%. The Alexnet CNN model consists

of five convolution layers, two local response normalization layers (LRN), two max

pooling, and three fully connected layers. This model contains over 62.4 million pa-

rameters and requires 1.1 billion computations for performing the inference on the

image of 227 × 227 × 3. Figure 2.1 represents the architecture of Alexnet.

Resnet [4], introduced in 2015 by the Microsoft research team, won the ILSVRC

2015 competition with an error rate reduced to 3.5%. Multiple residual neural net-

works were proposed by the Microsoft research team, namely Resnet-18, Resnet-34,

Resnet-50, Resnet-101, and resnet-152. The Resnet-50 architecture trained for 224

× 224 × 3 image size originally has around 25 million of parameters with forty-nine

convolutions, one fully connected layer, one average pooling, and one max pooling.

The significant advantage of using deep residual networks is the solution to the prob-

lem of degraded neural network performance when there is an increase in the number

8



Figure 2.2: Architecture of Resnet

of layers. Figure 2.2 represents the architecture of Resnet-32.

Retinanet [23], developed by the Facebook research team, is the CNN archi-

tecture used by video-analytics based applications for object detection. Retinanet

model’s inference phase is divided into three parts. The first part acts as the back-

bone that proposes the regions for object detection, followed by the feature pyramid

network (FPN) [25] that generates four feature maps by merging the top layers with

the bottom ones. The output of the FPN is used to generate bounding box regression

and classify objects in the image. Retinanet performs 156 GFLOPS on the image size

of 800 × 800 × 3 for detecting objects in a given image. Figure 2.3 represents the

architecture of Retinanet.

Light-weight retinanet [24], proposed by the parallel system and computing

(PSC) lab of Arizona state university, is the modified version of the Retinanet [23]

CNN model. The underlying architecture of Light-weight Retinanet is similar to the

original Retinanet and can be referred from Figure 2.3. The idea behind Light-weight

Retinanet is to reduce the number of FLOPS by identifying the most computation-

ally expensive layer and reducing filter size given there is no drop in the accuracy.

This model reduces the number of FLOPS by 1.8 times as compared to the original

Retinanet CNN architecture.
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Figure 2.3: Architecture of Retinanet

2.3 CNN Layers

In the previous section, we discussed the CNN models that we use to measure

the performance of our CNN accelerator design. To ensure that our CNN accelerator

design is compatible with different CNN models, along with convolution we have

added support of multiple CNN layers namely, batch normalization (BNORM), LRN,

max pooling, average pooling, element-wise (ELTWISE), fully connected (FC), and

rectified linear unit (RELU) layer for the inference phase of CNN models.

Convolution: The core operation of CNN based model is convolution. The

number of layers in CNN models are increasing as they become dense, which increases

the percentage of the convolution computations. The Alexnet CNN model, with five

convolution layers, has 90% of its computations as convolution that increased in the

Resnet-50 CNN model to 99%. As a result, accelerating convolution becomes crucial

for the CNN accelerator, as has been evident from [26]. The convolution is a 3-D

multiplication and accumulation of the input feature maps and weights and is known

to be the computationally expensive layer. Equation 2.1 represents the formula for

convolution,

output(oc, y, x) =
ic∑
n=0

K∑
n1=0

K∑
n2=0

inp(n, y + n1, x+ n1)× w(oc, n, n1, n2) (2.1)

where the output (oc,x,y) is the output generated at x row, y column at oc channel,
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which is calculated after multiplying and accumulating the weights of K× K size

with the input feature map at x row and y column. Another factor to consider with

convolution is stride, which determines the shift of the window of the weight along

the rows and columns of the input feature map.

LRN: The LRN layer [3], used by earlier CNN models such as Alexnet, to normal-

ize the input feature maps. Normalization also depends on the neighboring elements

of the input feature map also. It generates the output feature map of the same di-

mension as the input feature maps with the normalized result written at the same

coordinate position as the corresponding input feature map. The LRN layer uses

Equation 2.2 to normalize the input feature maps.

output(i, y, x) = input(i, y, x)/(k + α×
min(N−1,i+n/2)∑
j=max(0,i−n/2)

(input(j, y, x)2))β (2.2)

Parameters n,α,β, and k are trainable parameters, and are fixed for inference phase.

The parameter N is the input channel dimension that varies layer to layer.

Pooling: The pooling layers are used by CNN models for down-sampling the

input feature maps, such that the dimension of each feature map reduces by the

factor, which is determined by the pooling filter dimension (Kp × Kp), and stride

factor. The two types of pooling, which are generally used by CNN models and

supported by our design, are 1) average-pooling, and 2) max pooling. Equation 2.3

and 2.4 shows the functionality of average and max pooling, respectively.

output(i, y, x) =

n=Kp∑
n=0

n1=Kp∑
n1=0

(input(i, y + n, x+ n1)/(Kp ×Kp) (2.3)

output(i, y, x) = max(input(i, y +Kp, x+Kp) (2.4)

BNORM: BNORM [27] is a more commonly used layer than LRN for normalization.

It replaced the LRN layer mainly because of the higher learning rate. For example, in

Resnet-50, every convolution layer is followed by the BNORM layer. BNORM output,
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similar to LRN, is of the same dimension as the input feature map dimension. In LRN,

the normalized output depends on the neighboring elements of the input. However,

in the BNORM layer, the output at position (y,x) only depends on the input at the

position (y,x). Equation 2.5 represents the formula for BNORM,

output(i, y, x) = γ((input(i, y, x)− µ)/
√
σ2) + β (2.5)

where µ is running mean, and σ2 is running variance. Parameters γ and β are trained

parameters, and not changed in the inference phase. Thus, the BNORM layer can

be fused with the previous convolution layer, as suggested by [28]. In our design, we

have fused BNORM layer with the convolution layer.

ELTWISE: ELTWISE layers merge different branching layers, which is becoming

common in many CNN models. It is evident from different variations of Resnet CNN

models. ELTWISE performs an element-wise sum operation between two merging

branches, and generates the output, which is of the same dimension as the inputs.

FC: For most CNN models, the FC layer is the last layer, which is used for

classification of the image. FC layers generate a one-dimension result which connects

all the input feature maps by multiplying the input feature maps with the weights

and accumulating the results. In FC layers, there is no opportunity to re-utilize the

weights because of which FC layers are memory intensive, and the available external

board memory bandwidth limits their performances. Equation 2.6 shows the formula

for calculating FC layer output,

output(i) =

n=Nif∑
n=0

w(i, n)× inp(n) (2.6)

where Nif is the dimension of the input feature map. The Alexnet CNN model

contains three FC layers as compared to Resnet-50, which has one FC layer. In our

design, we use same hardware for both convolution and FC layers.
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Activation: The activation functions are the non-linear functions such as tanh,

sigmoid. The function supported by our CNN accelerator design is RELU. As Equa-

tion 2.7 represents,

output(i) = (input(i) > 0)?input(i) : 0 (2.7)

RELU generates the results of same dimension as the input.

2.4 OpenCL-based FPGA Computing

The OpenCL framework developed by the Khronos group is an open-source plat-

form that enables parallel programming across heterogeneous hardware such as FP-

GAs, GPUs, and CPUs. OpenCL codes are portable across different hardware.

OpenCL code consists of the host and device code, where the host code, written

in C/C++, runs on the host processor, which communicates accelerator via PCIe.

The host code is compiled by the standard C/C++ compiler, such as g++/gcc. The

device code, also known as the kernel code, written in OpenCL C, is mapped to

hardware by converting code to VHDL and synthesizing the generated VHDL code.

Placement and routing along with static timing analysis are performed by vendor-

specific OpenCL based HLS tools on the synthesized code, and the binary file is

generated that programs the target hardware. The device code is compiled at run-

time, where data which accelerator uses to do computation is known only at run-time

and is send by host code via PCIe. For our thesis, we are using Intel OpenCL SDK

for FPGA to program Intel ARRIA 10 GX1150 FPGA. Intel OpenCL offers following

two ways of programming hardware.

First is, NDRange programming, where the thread-level parallelism is ex-

plored. But with this, available hardware resources such as registers are not utilized

efficiently, and no loops are pipelined. The performance for this mode mainly depends
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on the number of thread FPGA can execute in parallel.

Second is Single-thread Programming, where compiler pipelines loops to im-

prove the throughput [29]. With Single-thread programming, the compiler can map

some of the buffers to the available register or shift-register that optimizes memory

bandwidth utilization.

Additional features of Intel OpenCL SDK for FPGA that we have exploited in

our design implementation are:

• Memory channels, which are the first-in-first-out (FIFO) on-chip registers

that transfer the data between different kernels. This pipelines data movement

and hence can be used to increase temporal parallelism.

• Autorun kernels are the part of the device code that has no interface with

the host code. So they are generally used for computation, which receives

data, processes it, and distributes via memory channels. Autorun kernels are

always running kernels and are not invoked from the host side. This reduces

the latency of invoking the kernel from the host side and hence improves the

performance. [8] shows that using autorun kernel also enables the compiler to

optimize pipeline better and increases the frequency of the design.
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Chapter 3

ARCHITECTURE DESIGN

This chapter provides an in-depth description of the architecture design of our CNN

accelerator along with the optimization techniques for different layers of CNN, namely

convolution, LRN, FC, ELTWISE, and pooling to accelerate the performance of

CNNs. Figure 3.1 represents the proposed system architecture, along with the data

flow. The input feature maps are read from the external memory and stored to an

on-chip shift-register-based buffer, which we further describe in Section 3.2.6. The

Figure 3.1: Proposed System Architecture
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weights are also read from the external memory and are streamed to the process-

ing elements (PEs), along with the input feature maps to perform convolutions. We

adopt a 1-D systolic array architecture for accelerating convolution layers, which we

discuss in Section 3.1. Depending on the subsequent layer of convolution, the con-

volution results are sent to either the LRN, pooling, ELTWISE or RELU modules.

Similarly, for the following convolution layer, the input feature maps are read from

the external memory along with the new weights, and the data flows in a similar

direction as the first convolution. We parameterize the architecture design of our ac-

celerator with three architectural parameters, namely pe num, vec fac, and reuse fac.

Pe num determines the number of PEs in the 1-D systolic array that performs convo-

lution in a deep pipeline, as shown in Figure 3.1. Reuse fac determines the number

of times convolution kernels reuses the same input feature map data loaded into the

shift-register-based buffer. A high reuse fac reduces the need for external memory

access and improves bandwidth efficiency. Vec fac defines the SIMD width of MAC

units in each PE. These three parameters allow users to efficiently perform the design

space exploration to fully utilize the available hardware resources on an FPGA. An

example of the design space exploration based on the Intel Arria 10 development kit

is discussed in Chapter 5.

Each module of the proposed system architecture is generalized to make our ac-

celerator compatible with a variety of CNN models. Taking advantage of the high

generality, we tested the proposed CNN accelerator with four different CNN models

of various sizes, including Alexnet, Resnet-50, Retinanet, Light-weight Retinanet. We

discuss measure performances in Chapter 6.
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Figure 3.2: C Code of Convolution

3.1 Convolution Architecture

The convolution, defined in Equation 2.1, is the most computationally expensive

layer, and it accounts for more than 90% of the total computations of a CNN. Thus,

optimizing the convolution computations is the key to accelerate the performance of

the CNNs. Figure 3.2 represents the C code of convolution. A convolution result

is obtained after six nested loops are executed. The basic principles of accelerating

convolution are to 1) parallelize the execution of data-independent loops with spatial

parallelism in hardware, and 2) pipeline the execution of data-dependent loops with

temporal parallelism in hardware. Loop1, loop3, and loop4 of Figure 3.2 have no

loop-carried data dependency. Thus they can be parallelized in execution. The other

loops of Figure 3.2 have loop-carried data dependency. They can be partially paral-

lelized due to the associative property of addition and multiplication and then further

pipelined to resolve all the data dependency. For our design, we apply these principles

and unroll loop1, loop2, and loop4 to accelerate the convolution performance.

However, the following challenges remain and must be resolved for accelerating

the CNNs on the system level:

• FPGA acceleration cards have limited on-chip memory. They suffer from

long access latency for transferring the weights and input feature maps be-

tween the external memory and on-chip buffers, which significantly limits the

system-level performance of CNN acceleration. The size of the weights and in-
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put feature maps are often large in CNNs, and the on-chip memories in FPGA

are usually not large enough to store. For example, the weight size for the second

convolution layer of Alexnet is 4 MB, making it impossible to store. This is why

both the weights and input feature maps must be stored in the external memory.

However, this results in transferring a large amount of data from the external

memory onto the on-chip memory. As a result, the long external memory ac-

cess latency becomes the performance bottleneck of the system. The solution to

this challenge is to optimize the memory accesses by loop tiling [16] and using

shift-register-based buffers to store the input feature maps, which promises to

reduce the amount of external memory access and improve the external mem-

ory bandwidth efficiency. We discuss the memory access optimization scheme

in Section 3.2.6.

• Scalability of the accelerator: Digital signal processing (DSP) blocks are

embedded in FPGAs to perform fast multiplication and accumulation. So, the

number of DSP blocks represents the computing power of a given FPGA. Fully

utilizing these blocks at high efficiency is one of the targets of our accelera-

tor design. It is evident from [29], [15] that achieving 100% utilization of the

available DSP blocks is challenging. Reasons that prevent scaling up of the

accelerator include the following:

– Long interconnect routes results as DSP blocks are spread across the

FPGA; in addition, routing of the LUTs requires additional interconnect

resources, which increases the routing congestion, and hence it is difficult

for the compiler to route the design. This leads to a longer critical path,

which decreases the frequency of the accelerator. One of the solutions is a

1-D systolic array architecture for convolution. We discuss the 1-D systolic
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array architecture in Section 3.1.1.

– The large size of multiplexer makes it difficult for the compiler to

fit the multiplexer. For example, parallelizing loop2 or loop5 of Figure 3.2

generates a different number of output results in parallel, which determines

the size of the output multiplexer. One of the solutions is to reorganize the

reading of the input feature maps and to parallelize loop2 to reduce the

size of the output multiplexer. We further discuss the solution in Section

3.2.7.

– High fan-in and fan-out make it difficult for the compiler to complete

the placement and routing stage. We propose the solution to this issue

Section 3.2.8.

3.1.1 1-D Systolic Array Architecture for Convolution

For convolution, we implemented the idea of highly pipelined 1-D systolic array

architecture [30], which can be seen in Figure 3.3. The accelerator consists of an

array of PEs, with each PE receiving different sets of the weights, and shifting the

input feature maps to the next PE, with the first PE receiving the input feature

maps from the input buffer. Each PE consists of multiple MAC units that perform

convolution and sends out the result. Partial sum (PS) stays inside each PE and is

used for accumulation with the result generated by the MAC units. This minimizes

the movement of PS. The result at the position (oc, y, x) of Equation 2.1 is ready to

be used by the other layers after loop2, loop5, and loop6 of Figure 3.2 are finished.

Each PE generates independent results, which are either directly transferred to the

external memory or used by the other layers such as ELTWISE. Pe num determines

the number of PEs that exists in the accelerator and hence, the depth of the pipeline,

which is shifting the input feature maps. For each PE, reuse fac determines the
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Figure 3.3: Systolic Array Architecture

number of independent results generated by each PE in parallel. So the total number

of outputs generated in parallel is given by Equation 3.1.

number output = pe num× reuse fac (3.1)

Equation 3.1 also determines the size of the output multiplexer, which collects the

output from multiple PEs.

This architecture addresses the scalability challenge of the CNN accelerator that

we discussed in Section 3.1 because of the following key features:

• Short and local interconnects: 1-D systolic array architecture results in

short and local interconnects between different PEs. With short and local in-

terconnects, routing congestion is reduced along with the critical path, which

increases the frequency of the design.

• Elimination of multiplexer: The input feature maps are shifted across from

one PE to another PE, along with the weights, which are routed to a fixed PEs.

For example, W0 always routes to PE0, so no multiplexer is needed for shifting

the input feature maps and the weights to different PEs, thus eliminating the

need for a multiplexer.

• Reduced input feature map fan-out: Each PE shifts the input feature maps

to the next PE only. Thus, for shifting the input feature maps, PEn is driven
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only by PEn−1. As a result, 1-D systolic array architecture reduces the fan-out

and hence increases the scalability of the CNN accelerator.

• Reducing the external memory access: As the same input feature maps

are shifted across different PEs, architecture brings down the external memory

access for the same input feature maps by pe num times. Thus relaxing the

board memory bandwidth and reducing the external memory access.

• Concurrent execution: As each PE receives both shifted input feature maps

and weights, each PE generates results after the same number of cycles and

hence increases the concurrent execution of convolution by pe num factor.

Overall, the proposed 1-d systolic array architecture for convolution improves both

the scalability and operating frequency, thus improving the performance of the CNN

accelerator.

3.1.2 PE Architecture

Figure 3.4 shows PE architecture, which is replicated based on the pe num pa-

rameter. It consists of a highly pipelined MAC tree, which operates on the weights

and input feature maps received per cycle. The stored PS is accumulated per cycle,

with the result generated by the pipelined MAC tree.

The number of DSP blocks utilized by each PE is determined by the vec fac and

reuse fac. Each PE explores spatial parallelism by generating reuse fac number of

output in parallel. Equation 3.2 expresses the number of DSP blocks utilized per PE.

DSP units = vec fac× reuse fac+ reuse fac (3.2)

The first term accounts for the MAC units of Figure 3.4, and the second term is for

the last stage adder unit to accumulate the PS.
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Figure 3.4: PE Architecture, with MAC Units. Ip and W n Are Shifted Input Data

and Weights to PE, Respectively, Flip-flop (FF) Updates the PS per Cycle, Multi-

plexer (Mux) Sends out Results to the next Layer

3.2 OpenCL Kernel Design

We use the Intel OpenCL SDK for FPGA to implement our accelerator. Along

with the convolution, other layers, namely LRN, max pooling, RELU, and ELTWISE,

are separated into different kernels. For layers, namely FC and average pooling, the

same convolution kernel is reused to increase the hardware efficiency.

3.2.1 Convolution Kernel Design

Our OpenCL kernel design consists of multiple kernels that communicate through

the Intel’s OpenCL memory channels (discussed in Section 2.4) to implement the

proposed 1-D systolic array architecture for the convolution. Figure 3.5 represents the
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Figure 3.5: Kernel Design, with One PE, Single-Thread Memread and Memwrite

Kernel Transferring Data to and from the External Memory Respectively.

convolution kernel design with one PE kernel for computation. Two single-threaded

kernels, namely, memread and memwrite, are responsible for transferring the data

from and to the external memory, respectively. The memread kernel loads the input

feature maps and the weights and shifts them to the PE kernel through memory

channels. The shift-register-based on-chip buffer is implemented in the memread

kernel to store the input feature maps. The PE kernel is an autorun kernel (discussed

in Section 2.4), which receives the data, performs MAC operations, and streams

out the result to the memwrite kernel, where the results are transferred back to the

external memory. Pe num parameter defines the size of the PE kernel array, which

sends out the results to the memwrite kernel in parallel.

The key advantages of adopting this kernel architecture are :

• Deep pipelined processing: Multiple kernels communicating with each other

through memory channels increases the level of temporal (pipeline) parallelism.

• Optimal initiation interval (one cycle): Separating the convolution op-

eration into multiple cascaded kernels allows the Intel FPGA OpenCL SDK
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compiler to resolve all the serial dependencies that exist in the design. As a

result, the compiler efficiently pipelines the design with an initiation interval of

one clock cycle.

• High utilization of the hardware resources: Other layers, namely pooling,

ELTWISE, and RELU, also use memread and memwrite kernels, thus increasing

the efficiency of hardware resources utilization.

The first two advantages of this kernel architecture are the key to improving the

throughput of the CNN accelerator.

3.2.2 LRN Kernel Design

The LRN layer normalizes the input feature maps and is defined by Equation 2.2.

Out of all the CNN models that we use for our experiments, only Alexnet uses this

layer. LRN layers require an exponential function, which consumes a large amount of

FPGA resources. This limits the resource utilization of the convolution layer, which is

more crucial to accelerate the performance. To reduce the additional utilization of the

resources, we implement exponential operation using a piece-wise linear approxima-

tion function. LRN could also be reformulated as Equation 3.3, where f(x) represents

the exponential term of Equation 2.2. To achieve the required accuracy, we defined

fifty points for the piece-wise linear approximation of the exponential function.

out(x) = in(x) ∗ f(x) (3.3)

The LRN kernel is implemented in a single-threaded OpenCL kernel mode, with

vec fac determining the SIMD width for the LRN layer. The number of outputs

generated in parallel is equal to the vec fac parameter.
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3.2.3 Pooling Kernel Design

Average and max pooling are the two types of pooling supported by our design.

For max pooling, defined by Equation 2.4, we have added a single-threaded kernel

that receives the input feature maps from a memread kernel through the memory

channel and performs a comparison to find the maximum value and write back the

result to the external memory. The vec fac parameter determines the SIMD width

for max pooling.

For average pooling, defined by Equation 2.3, where K p × K p is the pooling

filter size, our CNN accelerator uses the same kernel design as the convolution kernel.

The average pooling output is generated by accumulating the input feature maps

and multiplying the accumulated result with 1
K p×K p

. So, by defining the weights as

1
K p×K p

and using the distributive property of addition and multiplication, we are

able to use the convolution kernels for average pooling, which further increases the

hardware utilization.

3.2.4 FC Kernel Design

The FC layer flattens the input feature map to one dimension and is a special

case of the convolution with the filter size being the input feature map dimension.

With loop3, loop4, and loop5 removed, the C code of the convolution in Figure 3.2

can be used for describing the computations in the FC layer. Therefore, we reuse

the convolution kernel to also support the computations in the FC layer. Since the

FC layer is a memory bounded layer (discussed in Section 2.3) and requires fewer

computations as compared to the convolution layer, the performance of the FC layer

is limited by the available external memory bandwidth of the FPGA board. The two

solutions that our accelerator design supports to reduce the impact of the limited
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board memory bandwidth are, 1) quantization of the FC layer weights to reduce

memory bandwidth requirement, 2) batch-processing multiple images when the FC

layers start in parallel, which increases the reusability of weights hence improves the

throughput of the design.

3.2.5 Other Layers Kernel Design

Other layers, namely ELTWISE and RELU, are implemented in the memwrite

kernel of Figure 3.5. The RELU and ELTWISE layers are implemented as optional

functional units and are only activated when needed.

3.3 Optimization for Memory Access

Loop tiling [31] is an optimization technique that we adopt to reduce the amount

and frequency of the external memory access, thus relaxing the external memory

bandwidth requirements and improving the performance of the CNN accelerator.

Loop tiling optimizes the utilization of the on-chip memory by storing a block of input

data onto the on-chip memory and reusing the block of data stored locally as cached

data. Since shift-register-based buffers are the most efficient buffering scheme for

pipelined processing in a systolic array architecture, it is implemented as the buffer-

ing scheme in our accelerator for storing the block of input feature maps. One should

note that the Intel FPGA OpenCL SDK compiler only synthesizes shift-register-based

buffers efficiently in single-threaded kernel mode. Therefore, the memread kernel is

implemented in the single-threaded kernel mode in our accelerator. Figure 3.6 rep-

resents a shift-register-based buffer. With shift-register-based buffer implementation,

all the elements are reused until they are pushed out of the buffer. The shift-register-

based buffering scheme eliminates the need for using wide multiplexers to feed the

data into PEs and significantly simplifies the interconnections between the memory
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Figure 3.6: Loop Tiling Implemented Using Shift-Register-based Buffer Where Data

Is Available for 8 Cycles and Can Be Reused for 8 Cycles

buffers. This reduces the critical path delay and hence increases the frequency of the

accelerator. The size of the shift-register-based buffer is determined by the reuse fac

and vec fac and is given by Equation 3.4,

SR size = reuse fac× vec fac (3.4)

with the step size of shifting per clock cycle equaling to vec fac bits. The shift-register-

based buffer decreases the overall external memory access by the factor indicated

by Equation 3.4, thus improving the memory bandwidth efficiency and the overall

system-level performance of CNN accelerator.

3.4 Reading of Input Feature Map

The input feature maps can be considered as 3-dimensional data, and the vec fac

parameter determines the size of the input feature maps transferred from the external

memory per cycle. The objective of our accelerator design is to minimize the number

of output results generated by each PE to reduce the size of the output multiplexer,

which collects the output results and transfers them to the external memory. The

reading of the input feature maps whether along the channels or the rows results in
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Figure 3.7: Reading along the Row with Vec fac Equal to 4 Results in Generation of

Vec fac Number of Outputs in Parallel

a different number of outputs generated in parallel. So, optimizing the reading of the

input feature maps becomes vital to reducing the size of the output multiplexer.

Memory accesses are coalesced to increase the efficiency of available memory band-

width. With vec fac defining the amount of data transferred from the external mem-

ory per clock cycle, there are two possible ways of reading the input feature maps:

• Reading along the row: Reading vec fac size of data along the row of the

input feature maps per cycle, as shown in Figure 3.7, results in parallelizing

loop4 of Figure 3.2 to increase parallel computations, thus generating the output

size of vec fac per PE.

• Reading along the channels: Reading vec fac size of data along the channels

of input feature maps, as shown in Figure 3.8, results in parallelizing loop2 of

Figure 3.2 to increase parallel computations, and thus generating the output

size of one per PE.

Comparing the two reading pattern, reading the input feature maps along the

channels generates outputs, which are 1
vec fac

time fewer outputs as compared to

reading along the row. Thus, to reduce the size of the output multiplexer in our
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Figure 3.8: Reading along the Channel with Vec fac Equal to 4 Results in Generation

of One Output

accelerator, data is read along the channels. The size of the output multiplexer

depends on the pe num and vec fac parameters and is given by Equation 3.1.

3.5 Design for Scalability

The proposed 1-D systolic array architecture in Section 3.1.1 reduces routing con-

gestion and removes the input multiplexer from the design, which increases the scal-

ability of the design. However, as the design scales up, fan-in of the storage units

and fan-out of the load unit issues become the bottleneck that prevents the further

upscaling up of the design.

The high fan-in issue exists in the storage unit that collects the output, which

it receives from multiple PEs in the memwrite kernel of Figure 3.5. To resolve this

issue, we propose the solution discussed in Section 3.3 by reading the input feature

maps along the channels to minimize the size of the output multiplexer and hence

reduce fan-in of the storage unit.

The high fan-out issue exists in the load units that are used to transfer the input
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Figure 3.9: Fan-out Issue for Load Unit as Load Unit Driving 16 PEs

feature maps and the weights from the external memory to the on-chip buffer. The full

utilization of resources is not possible because the high fan-out of load units creates a

routing congestion problem as the parallelism of computation increases. That is why

resolving fan-out issues in the design is critical, enabling the design to scale up.

For our design, the high fan-out issue exists in the input feature maps and weights

load units, which stream the data to the pe num number of PEs through memory

channels. The proposed 1-D systolic array convolution architecture shifts the input

feature maps from one PE to another PE. Thus, it resolves the fan-out issue for the

input feature map load unit. However, the fan-out of the weight load units driving

pe num PEs increases proportionally as the number of PE. For resolving the high

fan-out of the weight load unit, we propose the solution to generate multiple load

units to transfer the weights from the external memory to the on-chip buffer. Figure

3.9 illustrates the fan-out issue where one load unit driving sixteen PEs results in the

high fan-out for the load unit. By replacing the one large load unit with four load

units, each with the fan-out factor of four, as shown in Figure 3.10, we are able to

resolve the routing congestion problem of the tool as well as improve the operating

frequency of the accelerator design by 1.1 times. This enables the accelerator to scale

up to increase the utilization of DSP blocks.
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Figure 3.10: Fan-out of Load Unit Reduced by Generating 4 PEs Driving 16 PEs

We also experimented to determine the maximum bit width of the data port that

a load unit can support without having a routing congestion issues. Equation 3.5

determines the number of load units for Arria 10 GX115 FPGA, where 2048-bit is

found to be the maximum bit width suitable for one load unit, regardless of whether

the data type is single-precision floating number or fixed-point representation.

Numberofloadunits = (vec size× pe num× bitsizeofdatatype)%2048 (3.5)

The automated generation of the load units enables us to scale up our design freely

and easily achieve 100% utilization of the DSP resources on FPGAs.
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Chapter 4

EXPERIMENTAL SETUP

To run our experiments, we have used Intels Arria 10 GX115 FPGA, shown in Figure

4.1. This FPGA has 1518 hardened floating-point DSP blocks that perform com-

putation. FPGA board has an external 2GB of DDR4 memory, with the memory

bandwidth of 19GB/s. Intel FPGA SDK for OpenCL version 18.0 is used to compile

device code. Host code is written in C/C++ and device code in OpenCL C.

After mapping design, to demonstrate our design flexibility we present perfor-

mance of multiple CNN models, Alexnet [3], Resnet-50 [4], Retinanet [23] and Light-

weight retinanet [24] in Chapter 6. OpenCV [32] is used to pre-process images before

it is sent to FPGA. We use a 32-bit floating-point and fixed-point representation for

weights, input feature maps, and output feature maps. For fixed-point representa-

Figure 4.1: Intel Arria 10 FPGA Board Equipped with Arria 10 FPGA
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tion, we measure the performance for the 8-bit data type of both the weight and

input feature maps. The architecture parameters are used to explore the available

FPGA resources, and the impact of parameters in scaling up the design is discussed

in Chapter 5.
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Chapter 5

DESIGN SPACE EXPLORATION

The target of our CNN accelerator is to fully utilize the available DSP blocks to max-

imize the parallel computations that would enable the CNN accelerator to achieve

the maximum performance. The three architectural parameters defined for the ac-

celerator, namely pe num, reuse fac, and vec fac, are explored to scale up the DSP

blocks utilization.

The scaling up of the architectural parameters increases the size of the input shift

register-based buffer (Equation 3.4) and the weights buffer (Equation 5.1), which

increases the utilization of the on-chip memory blocks and the demand of the external

board memory bandwidth.

weightsbuffersize = pe num× vec size (5.1)

Equation 3.5 is used to determine the number of load units synthesized for trans-

ferring the weights from the external memory to the on-chip buffer. Architecture

parameters reduce the external memory accesses for both the weights and input fea-

ture maps. The total reduction in the external memory accesses is given by Equation

5.2.

Reductioninexternalmemoryaccess = 2× Pe num× vec fac× reuse fac (5.2)

Each architecture parameter has a different impact on the increase in the demand

for the external board memory bandwidth, on-chip memory blocks utilization, and

DSP blocks utilization. So, we explore different combinations of the architectural

parameters to maximize the DSP blocks utilization such that on-chip memory blocks
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Resources Available Units

Logic Elements(k) 427,200

On-chip Memory Blocks 2,713

DSP Blocks 1,518

Table 5.1: Available FPGA Resources

utilization and the external board memory bandwidth is not the limiting factor in

the scaling up of the accelerator.

We perform our experiments on the Intel Arria 10 GX1150 FPGA with the avail-

able DSP and on-chip memory blocks, given in Table 5.1. The performance of the

Alexnet CNN model is measured to explore the values of the architectural parameters.

The vec fac determines per-cycle data transferred from the external memory to

the input shift register-based buffer. As a result, the vec fac parameter depends on

the burst-size of data per-cycle by the external memory and bit-size of the input

feature map and weights. Vec fac is determined by Equation 5.3

vec fac =
(burst size)

(data− bit− size)
(5.3)

The vec fac obtained by Equation 5.3 enables the accelerator to achieve high memory

bandwidth utilization. So, based on Equation 5.3, and with the available external

board memory burst-size of 512 bits, we fixed the vec fac parameter to be 16 for

32-bit single-precision floating input feature maps and weights.

Increasing pe num parameter value adds more PEs to the accelerator and increases

the transfers of the weights from the external memory onto an on-chip buffer thus

increasing the demand of the external memory bandwidth. Thus, pe num value is

limited by the available external board memory bandwidth. To determine the op-
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Figure 5.1: Change in Run Time (ms) of FC6 and FC7 layers by changing pe num

from 2 to 16 while reuse fac and vec fac fixed to 1 and 16 respectively

timized value of pe num, the run time of the most memory intensive layers of the

Alexnet CNN model, that is first two FC layers (FC6 and FC7), are measured, as

shown in Figure 5.1 with pe num changing from 1 to 20 while vec fac fixed to the

optimized value of 16 and reuse fac fixed to 1. As can be seen from Figure 5.1, the

run time of FC6 and FC7 layers increases as pe num value becomes greater than 16.

This is because of the available external board memory bandwidth limitation. So,

pe num value is fixed to 16.

The reuse fac parameter determines the size of the shift register-based buffer

(Equation 3.4) to store the input feature maps, which reduces the external mem-

ory accesses, and the number of results generated in parallel by each PE. Increasing

this parameter is not limited by the external board memory burst-size or memory

bandwidth but depends on the available on-chip memory blocks. Figure 5.2 shows

the improvement in the performance of the Alexnet CNN model as DSP blocks uti-

lization increases with the increase in reuse fac parameter from 1 to 4 while pe num

and vec fac parameters fixed to their optimized value of 16.

After determining the optimized values of the three architecture parameters, the
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Figure 5.2: Change in Run Time (ms) of the Alexnet CNN model with increase in

DSP blocks utilization (%) by increasing Reuse fac from 1 to 4

pe num reuse fac vec fac

16 4 16

Table 5.2: Parameters Value

CNN accelerator utilizes 100% of the available computing resources on an Intel Arria

10 GX1150 FPGA with architecture parameters values shown in Table 5.2.
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Chapter 6

RESULTS

In this chapter, we present the performance of the CNN models, namely, Alexnet,

Resnet-50, Retinanet, and Lightweight Retinanet. We compare our CNN accelerator

performance with state-of-the-art CNN accelerators performances for the Alexnet

CNN model in Table 6.1. We also compare FPGA resource utilization in Table 6.1.

We use latency to process one image as the parameter to compare the performance

of CNN accelerators. [15] is the open-source CNN accelerator. We implemented this

Design [11] [15] [16] This work

FPGA Arria 10

GT1150

Arria 10

GX1150

P395-D8 Arria 10

GX1150

CNN Alexnet Alexnet Alexnet Alexnet

Precision Float(32

bit)

Fixed(8

bit)

Fixed(8-16

bit)

Float(32

bit)

Logic Utilization 350K(82%) 105K(25%) NA 250K(59%)

BRAM Utilization 2360(86%) 641(24%) NA 2472(91%)

DSP Utilization 1290(85%) 377(25%) NA 1518(100%)

Latency/image(ms/img) 4.03 22.21 20.21 11.3

Frequency(MHz) 239 250 150 202

Winograd Convolution Yes No No No

Table 6.1: Performance and resource utilization Comparison with Existing Accelera-

tors
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CNN Model Resnet-50 Retinanet Lightweight Retinanet

Latency/image(ms/img) 84 1614.9 990.34

FLOPS(GFLOPS) 4 156 89

Table 6.2: Performance of Resnet-50, Retinanet and Lightweight Retinanet with 32-

bit floating point representation of the weights and input feature maps

CNN Model Alexnet Resnet-50 Retinanet Lightweight Retinanet

Latency/image(ms/img) 6.03 32 745.2 414

Table 6.3: Performance of Alexnet, Resnet-50, Retinanet and Lightweight Retinanet

with 8-bit fixed-point representation of the weights and input feature maps

CNN accelerator on the available FPGA to measure the maximum performance, as

shown in Table 6.1. DSP blocks utilization for [15] is limited to 25% of the available

DSP blocks, mainly because of the fan-in and fan-out issues discussed in section 3.5.

It can be seen from Table 6.1, our CNN accelerator outperforms the existing work

[15], [16] except for [11]. The CNN accelerator of [11] and [9] shows the advantage of

adopting Winograd transformation [33], which decreases the number of computations

required to perform convolution. So, to further improve the performance, Winograd

transformation needs to be incorporated as the part of future work. By comparing

the resource utilization from Table 6.1, no other CNN accelerators have been able to

utilize 100% of the DSP blocks, except for our CNN accelerator.

Table 6.2 shows the performance measured using the same CNN accelerator, as

we used for comparing the performance of the Alexnet CNN model (in Table 6.1),

with a 32-bit floating-point representation of the input feature maps and weights.

The performance shown in Table 6.2 demonstrates the flexibility of our CNN

accelerator with multiple CNN models. We also estimate the performance of the
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CNN models using the 8-bit fixed-point representation of the input feature maps

and weights. To support the fixed-point representation of the input feature maps

and weights, we use Intel’s OpenCL support for the arbitrary precision data type.

It also requires recompiling OpenCL kernels with the fixed-point representation of

the input feature maps and weights and with the CNN architecture, which is the

same as we proposed in Chapter 3. The CNN accelerator with the 8-bit fixed-point

representation of the input feature maps and weights, running at a frequency of 233.09

MHZ, utilizes 65% (1001) of the available DSP blocks, and 63% of(1718) of on-chip

memory blocks. Table 6.3 shows the performance of the CNN models that we have

used for our experiments with the 8-bit representation of the input feature maps and

weights.
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Chapter 7

CONCLUSION

In this thesis, we presented a generalized CNN accelerator using OpenCL. We iden-

tified the core operation of video analysis -CNN and proposed a 1-d systolic array

architecture to achieve high utilization of the available FPGA resources. We resolved

the challenges that exist in state-of-the-art CNN accelerators to achieve high per-

formance. We automated the scaling up of the CNN accelerator by introducing the

three architectural parameters and proposed a strategy to scale up the accelerator

using three architectural parameters that optimizes the external memory bandwidth

utilization and computing units utilization. We presented the performance of the

multiple CNN models to show the flexibility of our CNN accelerator.
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