
18

A GPU-Outperforming FPGA Accelerator Architecture

for Binary Convolutional Neural Networks

YIXING LI, Arizona State University

ZICHUAN LIU, Nanyang Technological University

KAI XU, Arizona State University

HAO YU, Southern University of Science and Technology

FENGBO REN, Arizona State University

FPGA-based hardware accelerators for convolutional neural networks (CNNs) have received attention due

to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve

a higher throughput than GPU counterparts. In this article, we demonstrate that FPGA acceleration can be

a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary

constraints on weights and activations. Specifically, we propose an optimized fully mapped FPGA accelerator

architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with

deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data

batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data.

Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-

7 FPGA is 8.3× faster and 75× more energy-efficient than a Titan X GPU for processing online individual

requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par

with a Titan X GPU in terms of throughput while delivering 9.5× higher energy efficiency.

CCS Concepts: • Hardware → Hardware accelerators; • Computer systems organization → Neural

networks;

Additional Key Words and Phrases: FPGA, hardware acceleration, deep learning, convolutional neural net-

work, binary neural network, high-throughput, energy efficiency

ACM Reference format:

Yixing Li, Zichuan Liu, Kai Xu, Hao Yu, and Fengbo Ren. 2018. A GPU-Outperforming FPGA Accelerator

Architecture for Binary Convolutional Neural Networks. J. Emerg. Technol. Comput. Syst. 14, 2, Article 18

(July 2018), 16 pages.

https://doi.org/10.1145/3154839

1 INTRODUCTION

Convolutional neural networks (CNNs) have become a popular machine-learning engine for
many image-related data analytics [15, 16, 20, 27], such as image classification, face detection,

This work, by Arizona State University and Nanyang Technological University, was supported by Cisco Research Center

(CG#594589) and Singapore MOE Tier-2 (MOE2015-T2-2-013), respectively.

Authors’ addresses: Y. Li, K. Xu, and F. Ren, 699 S. Mill Avenue, # 553, Tempe, AZ 85281, USA; emails: {yixingli, kaixu,

renfengbo}@asu.edu; Z. Liu, 50 Nanyang Ave, Singapore, 639798; email: zliu016@e.ntu.edu.sg; H. Yu, EE Department 1088

Xueyuan Rd., Shenzhen, 518055, China; email: yuh3@sustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1550-4832/2018/07-ART18 $15.00

https://doi.org/10.1145/3154839

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

https://doi.org/10.1145/3154839
https://doi.org/10.1145/3154839

18:2 Y. Li et al.

object tracking, and so on. CNNs outperform traditional feature selection-based approaches
especially for learning from big data. For a conventional CNN, high computation complexity
and large memory footprint are the two main throughput bottlenecks for hardware acceleration.
Therefore, the unmet throughput need of CNNs calls for the development of more efficient
hardware acceleration solutions for driving real-time applications.

Several methods have been proposed to alleviate the computation complexity and memory
footprint by reducing the redundancy of CNN models. These methods include pruning [18, 26],
reduced-precision CNNs [4], and binary CNNs (BCNNs) [9]. The pruning technique [18] prunes
the “useless” weights of a trained network based on sensitivity analysis, which can effectively
reduce the CNN weight count (usually referred to as network size) for a 10-class classification
problem by 75% [18]. Reference [4] demonstrates that reducing the numerical precision of a CNN
from 32 to 16 bits has very limited impact on classification accuracy. This can result in a network
size reduction of 50%. However, a numerical precision below 8 bits resulted from quantization in
the post-training stage often suffers from unacceptable accuracy drop [4]. Alternatively, recent
advancement in binary-constrained deep learning has opened up new opportunities for efficient
hardware acceleration. BinaryConnect [5] and the work in Reference [6] demonstrate the suc-
cessful use of binary and ternary (−1, 0, + 1) weights in a CNN, respectively. But, they both have
non-binary activations. As one step forward, EBP [7], Bitwise DNNs [8], and the BCNN in Ref-
erence [9] successfully exploit both binary weights and activations. In particular, the BCNN in
Reference [9] shows a 0.96% classification error rate on the MNIST database [17], which is compa-
rable to a full-precision state-of-the-art CNN. Overall, BCNNs have been shown with up to 96.8%
reduced network sizes with minimum accuracy loss when comparing to their full-precision coun-
terparts. Therefore, it is believed that BCNN is a more hardware-friendly model with superior
accuracy–complexity tradeoff.

Thus far, GPU-based CNN accelerator is still dominant due to its improved throughput over
CPUs. However, the high power consumption of GPUs has brought up cooling concerns in data
center computing. On the other hand, FPGA-based CNN accelerator has been widely investigated
due to its energy efficiency benefits. As the system throughput is proportional to the computing
parallelism and operating frequency, the theoretical throughput of GPU-based and FPGA-based
CNN accelerators can be estimated on the first order based on device specifications. A Titan X
GPU has 3072 CUDA cores, while a Virtex-7 FPGA has 3,600 DSP48 slices. For implementing a
full-precision CNN, the computing parallelism of GPUs and FPGAs can be approximately the same.
But, GPUs offer 5–10× higher frequency. As a result, FPGAs can hardly match up the throughput
of GPUs for accelerating full-precision CNNs. Differently, for a BCNN, the operations in the convo-
lution layers become bitwise XNORs and bit-count logic. A direct impact is that one can use LUTs
instead of DSP48 slices to implement the bitwise operations on an FPGA. Hundreds of thousands
of LUTs make it possible for a high-end FPGA to match up or surpass the throughput of a GPU,
even considering the bitwise operation capability of CUDA cores. Moreover, FPGAs benefit from
much higher energy efficiency, which makes it a superior solution for accelerating BCNN in a data
center setting. Early research effort [9] shows that GPU can get 7× speedup using a binary kernel
for MNIST classification task on a binary multilayer perceptron (MLP). However, there have been
very few studies on exploring FPGA-based accelerator architecture for binary neural networks.

In this article, we propose an optimized FPGA accelerator architecture tailored for BCNN.
The proposed architecture was adopted to implement a nine-layer BCNN on a Xilinx Virtex-7
XC7VX690 FPGA, which achieves nearly state-of-the-art classification accuracy on CIFAR-10. The
experiment results show that the FPGA implementation outperforms its optimized GPU counter-
part with 75× higher energy efficiency and 8.3x higher throughput for processing a small batch
size of 16 images (e.g., from individual online request). For processing a large batch size of 512

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:3

Fig. 1. Convolutional neural network.

images (e.g., from static data), the FPGA implementation achieves comparable throughput with
9.5× higher energy efficiency compared with the GPU counterpart.

The contributions of this article are summarized as follows:

• We propose a throughput optimization model for the end-to-end mapping of general
BCNNs.

• We demonstrate a 7.663-TOPS 8.2W FPGA accelerator for a BCNN that highly outperforms
the GPU counterpart, especially for processing individual online requests in small batch
size for the first time.

• We reveal that the impact of applying binary constraints in CNN training on FPGA accel-
eration is the enablement of massive computing parallelism of bitwise operations based on
abundant LUT resources.

• We illustrate the advantage of the fully mapped architecture over the conventional inter-
layer-folded architecture due to the higher ratio of active computing units and the capability
of mapping all the weights on chip.

• We optimize the accelerator architecture to fully exploit both spatial and temporal paral-
lelism across all the layers using architectural unfolding, pipelining, and dataflow control
with memory channels. Compared with GPU implementations that only have spatial paral-
lelism, the proposed architecture offers superior throughput and energy efficiency perfor-
mance regardless of the size of workload.

2 BACKGROUND AND MOTIVATION

2.1 CNN

A CNN is a trained neural network model with high-level features extracted from input images
[13]. A typical CNN model contains convolutional, pooling, and fully connected layers as shown
in Figure 1. The first few layers usually capture regional information such as edges and curves, and
the last few layers interpret these low-level features into high-level abstractions with the posterior
probability assigned for classification.

2.1.1 Convolution. The convolution layer is the core layer of a CNN. Taking an RGB image as
an example, the input of each convolutional layer is a three-dimensional (3D) feature map with
the size of WID ′ ×HEI ′ × DEP ′ as shown in Figure 2. Each filter has a size of FW × FH × FD,
where FW and FH is the width and height of the reception field, respectively, and FD is equal
to the depth DEP ′ of the input feature maps. N filters are constructed as a 4D tensor. The output
feature maps Y in the size of WID ×HEI × DEP are obtained from the spatial convolution
along the first and the second dimensions of the input feature maps with the 3D filterW [n]. The
operation in convolutional layers is defined as

Y [n]
[
w ′
] [
h′
]
=

FW −1∑
w=0

F H−1∑
h=0

F D−1∑
d=0

W [n] [w] [h] [d] × fmap
[
w ′ +w

] [
h′ + h

]
[d]. (1)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:4 Y. Li et al.

Fig. 2. A single layer in CNN and BCNN.

One should note that there is no data dependency for the calculation of each pixel across
the entire output feature maps. Therefore, spatial parallelism can be applied in the hardware
architecture to improve throughput. Differently, within the convolution operation for calculating
each pixel, data dependency exists among the nested loops of summation in Equation (1). These
data-dependent operations can be unfolded and pipelined in the hardware architecture to gain
temporal parallelism and improve throughput.

2.1.2 Pooling. The pooling layer performs subsampling across a K × K contiguous region on
the output feature map of convolutional layers. Pooling is used to pool out sensitive information
critical to classification and eliminate insensitive information that is irrelevant. Also, pooling layers
reduce an amount of trainable parameters in the network. There are two kinds of pooling methods
that are commonly used in CNNs. One is max-pooling, which picks the maximum value of the
pooling region. The other is average-pooling, which picks the mean value of the pooling region.

2.1.3 Normalization. Normalization is a powerful technique that stabilizes and accelerates the
training process [11]. In the inference stage, normalization needs to be applied to match the train-
ing process. Statistical reference values are counted across the whole training set as

z =
y − μ
√
σ 2 + ϵ

γ + β, (2)

where μ is the mean value and σ 2 is the variance with very a small constant ϵ to ensure a non-
zero denominator. Note that γ and β scales and shifts the normalized values, respectively. Since
μ, σ 2, ϵ , γ , and β are all constants in the inference stage, they can be precomputed to reduce the
computation complexity of normalization.

2.1.4 Nonlinear function. Nonlinear function is an element-wise operation that performs on
each neuron after the normalization in the convolutional layers and the fully connected layers.
Two common nonlinear functions used in CNNs are Sigmoid and Rectified Linear Unit (ReLU)
[13].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:5

Table 1. Methods for Neural Network Compression

Methods Execution Stage Compression Ratio Inference
Standard Training 1× full precision + full network

Quantizing Post-training Up to 3× reduced precision + full network
Pruning Training Up to 5× full precision + pruned network

BNN Training Up to 32× binary + full network

2.2 BCNN

A BCNN is a CNN trained with binary constraints that results in binary weights and activations
and a significant reduction in computation complexity. The convolution operation is the most
time-consuming and computation intensive part of a CNN. In a BCNN, as shown in Figure 2, both
the weights and activations are constrained to a binary set of values, e.g., [+ 1, −1]. As such, the
multiplications in convolution is simplified to a bitwise exclusive NOR (XNOR). From a vector
operation perspective, the convolution can be expressed as an XNOR dot-product operation as

Y [n]
[
w ′
] [
h′
]
=

FW −1∑
w=0

F H−1∑
h=0

F D−1∑
d=0

W̄ [n] [w] [h] [d] ⊕ f map
[
w ′ +w

] [
h′ + h

]
[d] . (3)

Comparing to a real-valued CNN with a single–precision data format, the FPGA implementation
of a BCNN requires much reduced logic and memory resources. Although, one should note that
neither the inputs nor the outputs of the normalization and the pooling layers are binarized. The
BCNN adopts a max-pooling scheme, which is thought to be more hardware friendly than average-
pooling [14]. Since the weights and activations are constrained to either + 1 or −1, the nonlinear
function becomes an adjusted sign function, a.k.a. a Binarize function defined as

Binarize (z) =

{
1 i f z ≥ 0,
0 otherwise .

(4)

2.3 Compression Ratio and Accuracy of Compact CNNs

Table 1 shows some popular techniques for neural network compression. The baseline is a standard
CNN trained by conventional techniques resulting in a 32-bit full precision network for inference.
Experiment results show that simply quantizing the network parameters below 10 bits in the post-
training stage will cause significant accuracy drop on CIFAR-10 classification task using the CNN
model in Reference [9]. Although pruning the network has limited accuracy loss, the pruned net-
work is still based on full-precision operations. The compression ratio achieved by pruning can
be up to 5× [18], but the hardware resources needed for computing the remaining full-precision
operations still have the same logic complexity.

However, the BCNN trained with binary constraints features the best compression ratio with
superior accuracy performance. Reference [9] shows that BCNN can achieve same accuracy as the
full-precision CNN on a 10-class classification task on CIFAR-10 dataset. Reference [19] demon-
strates that with improved training technique, the BCNN only suffers from a 5% accuracy drop
in terms of both top-1 and top-5 error for a 1000-class classification task based on an ImageNet
dataset. In addition, the hardware resources needed for realizing the bitwise convolutions in
BCNNs are just simple logic gates rather than multipliers. All of these suggest that BCNNs offer
much superior tradeoff between complexity and accuracy and are ideal for efficient hardware
implementation.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:6 Y. Li et al.

Table 2. BCNN Configurations

Name CONV-1 CONV-2 CONV-3 CONV-4 CONV-5
Filter/weight 3× 3× 3 128× 3× 3 128× 3× 3 256× 3× 3 256× 3× 3
of filters 128 128 256 256 512
Output size 128× 32× 32 128× 16× 16 256× 16× 16 256× 8× 8 512× 8× 8
Name CONV-6 FC-1 FC-2 FC-3
Filter/weight 512× 3× 3 8,192× 1,024 1,024× 1,024 1,024× 10
of filters 512 — — —
Output size 512× 4× 4 1,024 1,024 10

2.4 Impact of Binarization on Hardware Acceleration

A Titan X GPU has 3,072 CUDA cores (one ALU per core) and can run at up to 1GHz, while a
midrange Virtex-7 FPGA has 3,600 DSP48 slices and 433,200 LUTs and typically runs at around
100 to 200MHz. For mapping a full-precision or reduced-precision CNN, the two devices are on
a par in terms of the level of computing parallelism considering that a CUDA core and a DSP48
slice can map a floating- and a fixed-point multiplication accumulator (MAC), respectively. But
FPGAs run at a 5–10× lower frequency in general. As a result, the existing FPGA implementations
of reduced-precision CNNs can hardly achieve comparable throughput to their GPU counterparts.

A BCNN offers large room for throughput improvement for both GPU-based and FPGA-based
implementations. When using a tailored binary kernel on a GPU, a fully pipelined ALU in one
CUDA core can process 32 bitwise operations per clock cycle. This increases the equivalent com-
puting parallelism of a Titan X GPU to 3,072× 32 = 98,304 for running a BCNN. However, for an
FPGA-based BCNN, the bitwise operation can be efficiently mapped onto the abundant LUT re-
sources. Since one six-input LUT can map 2.5 XNORs on average, the computing parallelism of
a Virtex-7 FPGA is on the order of 433,200× 2.5≈1,000,000. Given the operation frequency differ-
ence, GPU- and FPGA-based BCNN implementations should have a similar level of throughput
performance in a first-order estimation. The FPGA-based solution features much higher energy
efficiency. It is also worth mentioning that GPUs can only achieve the theoretical peak through-
put when the data batch size is large enough to hide the computation and memory access latency.
Thus, in the application scenarios such as processing online classification requests from individual
users where small batches of data must be processed on the fly, FPGA-based solution will keep the
promise to outperform GPU counterparts in terms of both throughput and energy efficiency. In
the following sections, we present an FPGA-based BCNN accelerator and a benchmarking study
that validate our hypothesis.

2.5 A BCNN ON CIFAR-10

To assess the practical performance of the proposed architecture, we use the BCNN on CIFAR-10
[9] as an example model for the FPGA implementation. The overall architecture of BCNN is shown
in Table 2 [9]. It takes an RGB image with a size of 3× 32× 32 as the input of the first layer. For each
convolutional layer, the filter size is fixed as 3× 3 with a stride and zero padding of 1 pixel each.
The filter specification of each convolutional layer in Table 2 is denoted as the WID×HEI× DEP.
Max-pooling is performed over a 2× 2 window with a stride size of 2 followed by the convolutional
layers of 2, 4, and 6. The last three layers are fully connected layers. Normalization is applied to
all the layers, which is followed by binarization except for the last layer.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:7

3 ALGORITHM REFORMULATION FOR EFFICIENT FPGA MAPPING

3.1 Binary-Encoded Convolution

When training the BCNN in Reference [9], the weights and activations are constrained to either
+ 1 or −1. For efficient FPGA mapping, we encode + 1/−1 as 1/0 in our design. In this way, it only
takes 1 bit to store a weight or an activation value. Moreover, the convolution operation in layer l
is simplified into an XNOR dot product of the input feature map ab

l−1
and the weight wb

l
, given as

yl = XnorDotProduct
(
ab

l−1,w
b

l

)
. (5)

Equation (5) sums up 1s and 0s, which is different from the original BCNN that sums up -1s and
+ 1s in Equation (3). The relation between the original output feature map ylo and the revised yl

in our design can be expressed as

ylo = 1 × yl + (−1) × (cnuml − yl) = 2yl − cnuml , (6)

where cnuml = FW × FH × DEP is the total number of bitwise XNOR operations needed for each
ylo . The difference between ylo and yl is compensated in the normalization module in our design.

Note that all the layers take the binary feature map of its previous layer as the input except for
the first layer. In our design, we rescale the input data within the range of [−31, 31] and use a 6-bit
fixed-point data format, which helps to reduce the resource utilization of non-binary operations at
the cost of a limited classification accuracy loss of <0.5%, compared with its software counterpart
in Theano. Since the input image size is 3× 32× 32, the computational complexity of the first layer
is not a dominating factor. The fixed-point dot product of a 6-bit signed input a0 and a 2-bit signed
weight w1 is denoted as

y1 = FpDotProduct (a0,w1). (7)

3.2 Comparator-Based Normalization

The parameters subject to training can be considered as constant values in the inference stage.
Therefore, we can combine the binarization in Equation (4), the normalization function in Equa-
tion (2), and the value compensation in Equation (6) into a modified sign function defined as

NormBinarize (yl , cl) =

{
1 i f yl ≥ cl ,
0 otherwise,

(8)

where cl is a constant threshold derived by cl = (cnuml + μ − β
√
σ 2 + ϵ/γ) × 0.5, and it is rounded

to the nearest integer for hardware implementation.
The impact of the proposed reformulation on hardware implementation is that both the re-

formulated normalization and binarization functions can be efficiently implemented as a single
LUT-based comparator. In addition, one only needs to store one threshold value cl for each output
value rather than a set of training parameters μ, σ 2, β , and γ .

3.3 BCNN Model Overview

We summarize the inference flow for the reformulated BCNN algorithm in Figure 3. The convo-
lution in the first layer involves fixed-point dot product operations (FpDotProduct). Differently,
bitwise XNOR dot product operations (XnorDotProduct) are used in all the other layers. Max-
pooling (MP) is applied in layers 2, 4, and 6. Normalization and binarization are combined as a
single function (NormBinarize), which is applied in all layers except for the output layer. The
output layer ends with the normalization function Norm for classification.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:8 Y. Li et al.

Fig. 3. Pseudo code of the BCNN algorithm.

Fig. 4. Overview of the proposed accelerator architecture for BCNN.

4 ARCHITECTURE DESIGN AND OPTIMIZATION

4.1 Architecture Overview

The binary nature of the BCNN enables us to map all the weights, feature maps, and reference
values (for normalization) onto the on-chip block RAMs (BRAMs) in a single FPGA. This elimi-
nates any DRAM access latency and dramatically reduces the energy consumption of the system
comparing to the existing work relying on off-chip storage [1, 3, 12, 21].

Figure 4 shows the overall architecture of the proposed BCNN accelerator. The binary con-
volutional kernel in each layer is followed by a NormBinarize (NB) kernel with or without a
Max-pooling (MP) kernel. All of the kernels are highly parallelized with an optimized number
of processing elements (PEs) and operate in a single instruction multiple data (SIMD) fashion. A
streaming architecture is enabled by using double-buffering-based memory channels to handle the
dataflow between adjacent layers. Each PE in the binary convolutional kernel handles an XNOR
dot product operation, which is the core operation in both convolutional and fully connected lay-
ers. The PEs interface with the BRAMs in parallel to read the weights concurrently.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:9

Fig. 5. Loop unrolling in convolutional layers of BCNN.

4.2 Architectural Parameters

4.2.1 Loop Unrolling. The pseudo code in Figure 5 shows the main operations of a convolu-
tional layer in six nested for loops. Note that three inner loops in Figure 5 accumulates the XNOR
output values along the three dimensions of a convolutional filter that has loop-carried data de-
pendency. Unrolling data-dependent loops is the same as architectural unfolding. The unfolding
factor of data-dependent loops is denoted as UF. UF has a maximum value of FD × FW × FH in
each layer.

However, the three outer loops in Figure 5 are computing the pixel values along the three di-
mensions of an output feature map, which has no loop-carried data dependency. We denote the
unrolling factor of data-independent loops as P. P has a maximum value of DEP ×WID × HEI in
each layer.

From the architecture perspective of Figure 4, UF indicates computing parallelism inside each
PE while P represents the number of PEs in each layer (parallelism of PE arrays). Increase UF

improves throughput by increasing the level of temporal parallelism. This trades off more hardware
resource with improved computing parallelism inside each PE. Increase P is equivalent to creating
spatial parallelism in the architecture to improve throughput. Maximizing P generates a massively
parallelized PE array by utilizing the abundant LUT resources on the FPGA.

4.2.2 Pipelining. Loop pipelining is applied in the proposed architecture to further enhance the
temporal parallelism and maximize the system throughput. Note that the queuing time to feed in
the next data is the inversely proportional to throughput, which is referred to as initial interval
I in this article. If there is a loop existing in the data path, then the minimum initial interval will
be limited by the loop latency of the recursive architecture. With loop pipelining, we can feed in
the next data whenever possible with the minimum initial interval. In the case of a fully pipelined
implementation, we can feed in new data every clock cycle (I = 1).

4.3 Throughput Modeling and Optimization

If we only perform one XNOR operation and one accumulation in each clock cycle, then the total
execution time Cycleconv in terms of clock cycles of a convolutional layer can be model as

Cycleconv =WID × HEI × DEP × FW × FH × FD, (9)

where WID, HEI, and DEP denotes the width, height, and depth of a convolutional filter, and FW,

FH, and FD denotes the width, height, and depth of an output feature map, respectively.
When architectural unfolding is applied in performing the XNOR dot product operation in

each PE, Cycleconv will be divided by UF. Similarly, when spatial parallelism is applied to create
PE arrays for processing P output pixels in parallel, Cycleconv will be further reduced by P times.
The same PE array is reused to calculate the output feature maps with pipelining applied, which
contributes to an I -cycle initial interval for the most inner loop. Thus, the throughput of the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:10 Y. Li et al.

Fig. 6. Processing element (PE).

convolutional kernel with architectural optimization can be formulated as

throuдhputCONV =
UF × P

Cycleconv
× 1

I
× freq, (10)

where f req is the system frequency. Note that throuдhputCO NV is inversely proportional to the
estimated cycle count Cycleest in a convolutional layer, defined as

Cycleest =
Cycleconv

UF × P × I . (11)

In the proposed accelerator architecture, we use a double buffering scheme to further enhance the
spatial parallelism of the system as shown in Figure 4. The computation of each layer is triggered
at the same time and alternates between two phases. Specifically, one channel of f mapL−1 is
used as the input of the Lth layer while the L-1th layer is writing new outputs into the other
f mapL−1channel. When both layers finish processing, the memory buffers swap, and the next
processing phase is triggered. Therefore, the overall system-level throughput can be formulated as

throuдhput =
f req

max (C1,C2,C3 . . . ,Ck)
, (12)

where CL is the execution time of the Lth layer in the proposed accelerator architecture. CL can
be either Cycleest for throughput modeling or Cycler for evaluating real execution throughput.
Equation (12) reveals that the bottleneck layer with maximum execution time determines the
system throughput. Thus, the system throughput can be maximized with the optimal hardware
utilization when all the layers have equal execution time (C1 = C2 = C3 = · · · = Ck). In the case
that the Lth layer has longer execution time than other layers, one can always increase the par-
allelism of the Lth layer while decreasing that of other layers to gain throughput with minimum
overhead in resource usage. Since the convolutional layers take up over 95% of the computation,
we only emphasize the optimization of convolutional layers in this section. The fully connected
layer can be easily optimized to match up the system throughput using the same principle.

5 FPGA IMPLEMENTATION

In this section, we present the strategy of mapping different computing units to maximize the
FPGA resource utilization.

5.1 PE Unit

The block diagram of a PE unit is shown in Figure 6. A PE unit handles the XNOR dot product
operation of a weight vector and a feature map vector from the previous layer. The vectors are fed

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:11

Fig. 7. The architecture of computing kernels and their FPGA mapping schemes.

into an array of 2-input XNOR gates followed by a parallelized bit-count logic for accumulation.
Since both the XNOR gates and the bit-count logic take binary values as input, the PEs can be
efficiently implemented using the abundant LUT resources. This is the key to enabling massive
computing parallelism on an FPGA. Note that the number of XNOR gates in each PE is the same
as the unfolding factor UF of the current layer. By accumulating the PE output, the pixel value of
an output feature map can be computed by the bit-count logic.

5.2 Computing Kernels

Figure 7 shows the architecture of the convolutional kernel followed by the Max-pooling and
NormBinarize kernels. Each convolutional kernel has an array of PEs implemented using LUTs
followed by an array of accumulators implemented using DSP48 slices. The number of PEs and
DSP slices is equal to the spatial parallelism factor P. Each convolutional kernel thereby computes
P pixel values of the output feature map in parallel. Besides the weight arrays, only intermediate
results of the accumulator outputs (bit-count results) within a single feature map are stored in
BRAMs. Feature maps are mapped onto distributed RAMs.

For the convolutional layers 1, 3, and 5 without max-pooling, the outputs of accumulators are
directly connected to the NB kernels. The hardware kernel of fully connected layers is similar
to that in Figure 7. Note that the max-pooling is performed in pipeline with the computation of
feature maps in our implementation.

5.3 Memory

To read and write a large number of bits in the same clock cycle, we have to partition and reshape
the memory arrays in the BCNN model. Partition essentially breaks down a large data array into
smaller ones to fit in multiple BRAMs for parallel access. Reshaping basically redefines the depth
and width of a single BRAM by grouping multiple words into a wider one. In our design, the weight
and f map arrays are mapped onto BRAMs and distributed RAMs (registers), respectively. Since
the maximum word length of a BRAM in a Virtex-7 FPGA is limited to 32 bits, we first reshape the
weight array by 32 and then partition the weight arrays into several BRAMs to guarantee enough
memory bandwidth for the required system throughput.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:12 Y. Li et al.

Table 3. Optimized Parameters for Each Layer

Layer UF P Cycleconv Cycleest Cycler

Conv 1 27 32 3538944 4096 5233
Conv 2 384 32 150994944 12288 12386
Conv 3 384 16 75497472 12288 12296
Conv 4 768 16 150994944 12288 13329
Conv 5 768 8 75497472 12288 12386
Conv 6 1536 8 150994944 12288 14473

Table 4. FPGA Resource Utilization Summary

Resource LUTs BRAMs Registers DSP
Used 342126 1007 70769 1096
Available 433200 2060 607200 2800
Utilization/% 78.98 48.88 14.30 39.14

6 EXPERIMENT RESULTS

We implement the proposed accelerator architecture for the BCNN in Reference [9] using the op-
timal architectural parameters shown in Table 3. We optimize the parameters of UF and P to make
Cycleest of each layer approximately the same based on the throughput model in Equation (12).
Each layer is also fully pipelined with an initial interval of I = 1. Note that the operations along
the FW and the FD dimensions are fully unfolded for maximizing the throughput. By evaluating
the throughput with (12), the actual throughput is 85% of the modeling throughput.

6.1 Design Environment

We use C language to describe the accelerator architecture. Vivado HLS is used to produce the RTL
codes. The Vivado Design Suite is used to map the design onto a Xilinx Virtex-7 XC7VX690 FPGA.
The execution time in terms of clock cycles is reported by Vivado HLS and the system frequency
is reported by Vivado Design Suite after the implementation stage. We notice a large discrepancy
of LUTs usage between the synthesis reports in Vivado HLS and Vivado Design Suite. For accurate
results, the resource utilization and power consumption are reported in Vivado Design Suite after
the implementation stage.

6.2 FPGA Implementation Results

As shown in Table 3, the real execution time Cycler given by the synthesis report for each layer
is well aligned withCycleest estimated by our model in Equation (11). The throughput bottleneck
is layer 6 in this case. Running at a system frequency of 90MHz, the FPGA-accelerated BCNN
achieves an image processing throughput of 6,218 frames per second (FPS), which is the highest
throughput for the same dataset reported by far. The top-1 accuracy rate is 87.8%, which is only
0.3% lower compared to the software model in Theano.

To reduce runtime, we adopt a bottom-up design strategy by synthesizing our design layer by
layer in Vivado HLS and implementing the entire system in Vivado Design Suite. The overhead
introduced by initialization is negligible. Table 4 shows the resource utilization summary for the
entire BCNN implementation. LUTs are used for mapping all the computing kernels, including bi-
nary convolution, MP and NB kernels. Feature maps of convolutional layers are mapped onto dis-
tributed RAMs result in additional LUT consumption. The BRAM usage is mostly consumed by all
the weight matrices. Flip-flops are used for storing feature maps and constructing a deep pipeline.
Around 30% of the DSP slices are used by the first layer to perform fixed-point multiplication. For

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:13

Table 5. Results in Comparison with FPGA-Based and ASIC Accelerators

Device

Clock

(MHz)

Bit-

width GOPS

Power

(W)

Energy

Efficiency

(GOPS/W)

Performance

Density

(GOPS/kLUT)

Latency

(ms)

[3] Virtex 6 200 16 147 10 14.7 0.98 -

[1] Virtex 7 100 32 float 62 18.7 3.3 0.14 -

[12] Zynq-7000 150 16 137 9.6 14.3 0.75 224.60

[4] Stratix-V 120 8 ∼ 16 117.8 25.8 4.56 0.45 262.9

[22] Arria-10 150 8 ∼ 16 645.25 21.2 30 4.01 47.94

[23] Intel Xeon+ Stratix V 200 32 float 123.48 13.18 9.37 0.62 263.27

[24] Arria-10 385 fixed 1790 37.46 47.78 4.19 35.5

[21] Zynq-7000 143 1 ∼ 2 207.8 4.7 44 4.43 5.94

[29] YodaNN* - 1 525 0.06 8600 - -

[28] Google TPU* 700 8 92000 40 2300 - -

Ours Virtex 7 90 1 7663 8.2 935 22.40 0.99

*Indicates ASIC design and results of TPU is its peak performance.

the rest of convolutional layers, DSP slices are used for accumulating PE outputs as shown in Fig-
ure 7. If the network size scales up, then the size and bandwidth of BRAMs will limit the maximum
network size that can fit in our architecture. That is the limitation for a single FPGA-based imple-
mentation. However, the good thing is, if there are multiple FPGAs available, then it is feasible to
use the proposed solution to map inference stage of a large network across multiple FPGAs.

Existing FPGA-based CNN implementations are compared in Table 5. To minimize the impact
of different FPGA models on throughput, energy efficiency, and performance density defined as
throughput normalized to resource utilization are used as the performance metrics for compar-
ison. Compared with the FPGA implementations of floating-point or reduced-precision CNNs,
our BCNN implementation achieves 4–124× higher GOPS, 20–283× better energy-efficiency, 5–
160× better performance density, and 36–266× better latency. Even compared with the BCNN
implementation in Reference [21], our work achieves 5× better performance density in terms of
GOPS/kLUT and 6× better latency. Linked back to Equation (10), the throughput gains from un-
rolling factors UF and P is on the order of 103 times compared to a non-optimized design.

For the architecture maps a single layer of the BCNN at a time, we define it as inter-layer-folded
architecture. Regardless of binary or non-binary CNN, all the reference work in Table 5 excluding
Reference [28] (which is not clear for implementation detail) can be categorized as inter-layer-
folded architecture. Take the BCNN work in Reference [21] as an example. The work in Reference
[21] implements three kinds of computing kernels in hardware: floating-point convolution, binary
convolution, and fully connected kernels. Since this reference work maps a single layer of the
BCNN at a time, only one kind of computing kernels is active at a time. Such a time multiplexing
scheme limits the system throughput due to the low hardware utilization. In our design, all the
layers of the BCNN are mapped into a streaming architecture with optimized architectural param-
eters, and the data are flowing throughout the entire architecture in a deep pipeline. Therefore, all
three kinds of kernels are simultaneously active and the ratio of active computing units is high. Be-
sides, inter-layer-folded architecture consumes extra power for loading the weights from off-chip
memory layer by layer in addition to the reported power. On the contrary, there is no such over-
head in our architecture, since we fully map the network and trained parameters on chip. Roughly
speaking, there will be 3× throughput gain from fully mapped architecture. Besides, it is not
practical for inter-layer-folded architecture to store all the weights on chip (even if the weights
are binary). Assume all the weights are stored on chip, when the computation switches from one

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:14 Y. Li et al.

Fig. 8. Throughput and energy efficiency comparison with GPU implementations.

layer to another, it needs large MUXes to select from different memory banks (for binary weights).
Since the required bit width of MUXes is of the order of magnitude of 105, it will result in much
resource overhead in building these large MUXes. Thus, off-chip memory access is always required
for the conventional inter-layer-folded architecture.

When comparing the same design between FPGA and ASIC implementation, generally speak-
ing, the performance difference is expected to be one order of magnitude. The delay and power
overhead in FPGA is mainly caused by interconnects [30]. Even without considering general per-
formance gap between FPGA and ASIC designs, the proposed work achieves 14.6× better through-
put but 9.2× less energy efficiency than the BCNN ASIC accelerator in Reference [29]. We can see
the tradeoff between throughput and energy efficiency in Reference [29]. Overall, the performance
of the proposed work and Reference [29] are on the same level. If assuming a 10× performance
degradation factor from ASIC to FPGA, then the proposed work is 4× better than Reference [28]
in energy efficiency and has comparable throughput in terms of GOPS.

6.3 FPGA-Based Versus GPU-Based BCNN

Figure 8 compares the performance of the BCNN accelerated by a Titan X GPU and our FPGA-
based design. For GPU acceleration, the baseline kernel is designed for floating-point computation,
and the XNOR kernel is optimized for bitwise operations [9]. In the XNOR kernel, it concatenates
32 1-bit values into a 32-bit value. At the peak performance, each CUDA core can execute 32 bitwise
operations per clock cycle. That is the reason why BCNN can also gain remarkable speedup on a
GPU when using the XNOR kernel for compilation.

GPU acceleration is apparently sensitive to the size of workload (batch size here). One of the
keys to achieving high performance in GPU computing is to hide the long latency of functional
units by data-level interleaving especially when there are loop-carried data dependency existed in
the algorithm. Only when the workload is large enough, a GPU is able to maintain high thread-
level parallelism to achieve a high throughput. Differently, the FPGA-based solution is invariant
to the batch size of data. Experiment results show that our design significantly outperforms the
GPU acceleration using the baseline kernel in terms of both throughput and energy efficiency.
Even compared with the GPU acceleration using the XNOR kernel, which is reported as the best

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

A GPU-Outperforming FPGA Accelerator Architecture 18:15

GPU-based CNN performance by far, our design achieves a 75× better energy efficiency and an
8.3× better throughput for processing data in a small batch size of 16. For processing data in a
large batch size of 512 (the maximum size that fit into the GPU memory), our design can match
the throughput of the GPU acceleration with a 9.5× better energy efficiency.

Therefore, the FPGA-based BCNN solution is a clearly better choice for accelerating the data
center applications that process online individual requests in small batch sizes. In a recent study
conducted by Baidu, a dominant Internet company in China with 600 million active users, it is
reported that the typical on-line prediction workload in terms of batch size is around 8 to 16 [25].
Such small workload is not enough for GPU to achieve its peak throughput performance. Thus,
the FPGA-based solution is more superior in handling this kind of requests from individual users.

For processing static data in large batch sizes, the proposed solution is on a par with a Titan
X GPU in terms of throughput while delivering much higher energy efficiency. This renders the
FPGA-based solution a better choice for energy constrained applications, such as mobile-based
advanced driver assistance systems (ADAS). In the ADAS application, a large batch of data needs
to be processed for monitoring real-time road condition. In this case, both throughput and energy
efficiency are essential and the FPGA-based solution can be deployed.

7 CONCLUSION

In this article, we propose an optimized accelerator architecture tailored for BCNNs. We demon-
strate for the first time that the FPGA-based BCNN solution can greatly outperform a Titan X
GPU in terms of both throughput and energy efficiency for processing accurate image classifica-
tion tasks. The proposed BCNN accelerator running on a Virtex-7 FPGA is 8.3× faster and 75×
more energy efficient than a Titan X GPU for processing individual online requests in small batch
sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan
X GPU in terms of throughput while delivering 9.5× higher energy efficiency. Thus, BCNNs are
ideal for efficient hardware implementations on FPGAs regardless of the size of workload. The bit-
wise operations in BCNNs allow for the efficient hardware mapping of convolution kernels using
LUTs, which is the key to enable massive computing parallelism on an FPGA. Applying the opti-
mal levels of architectural unfolding, parallelism, and pipelining based on the proposed throughput
model is the key to maximizing the system throughput. Building memory channels across layers
with dataflow control is the key to constructing a streaming architecture to further improve the
throughput. Also, fully mapped architecture wins over the conventional inter-layer-folded archi-
tecture for better throughput due to the higher ratio of active computing units and the capability
of mapping all the weights on chip.

ACKNOWLEDGMENTS

We acknowledge Mr. Skip Booth and Mr. Hugo Latapie from Cisco for fruitful research discussions.
We also thank the Xilinx University Program for donating the FPGA boards.

REFERENCES

[1] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. 2015. Optimizing FPGA-based accelerator design for deep con-

volutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. 161–170.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems. 1097–1105.

[3] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun. 2011. Neuflow: A runtime reconfigurable

dataflow processor for vision. In Proceedings of the Conference on Computer Vision and Pattern Recognition 2011 Work-

shops. 109–116.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

18:16 Y. Li et al.

[4] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J. S. Seo, and Y. Cao. 2016. Throughput-

optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks. In Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 16–25.

[5] M. Courbariaux, Y. Bengio, and J. P. David. 2015. Binaryconnect: Training deep neural networks with binary weights

during propagations. In Advances in Neural Information Processing Systems. 3123–3131.

[6] W. Sung, S. Shin, and K. Hwang. 2015. Resiliency of deep neural networks under quantization. arXiv:1511.06488.

[7] Z. Cheng, D. Soudry, Z. Mao, and Z. Lan. 2015. Training binary multilayer neural networks for image classification

using expectation backpropagation. arXiv:1503.03562.

[8] M. Kim and P. Smaragdis. 2016. Bitwise neural networks. arXiv:1601.06071.

[9] M. Courbariaux and Y. Bengio. 2016. Binarynet: Training deep neural networks with weights and activations con-

strained to + 1 or −1. arXiv:1602.02830.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. 2016. XNOR-Net: ImageNet classification using binary convo-

lutional neural networks. In Proceedings of the European Conference on Computer Vision. 525–542.

[11] S. Ioffe and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. In Proceedings of the 32nd International Conference on Machine Learning.

[12] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song, and Y. Wang. 2016. Going deeper with

embedded FPGA platform for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. 26–35.

[13] Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553, 436–444.

[14] I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems. 1097–1105.

[16] K. Simonyan and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In Pro-

ceedings of the 32nd International Conference on Learning Representations.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE 86, 11, 2278–2324.

[18] S. Anwar, K. Hwang, and W. Sung. 2017. Structured pruning of deep convolutional neural networks. ACM Journal on

Emerging Technologies in Computing Systems 13, 3, Article 32, 18 pages.

[19] W. Tang, G. Hua, and L. Wang. 2017. How to train a compact binary neural network with high accuracy? In Proceedings

of the 31st AAAI Conference on Artificial Intelligence. 2625–2631.

[20] P. Panda, A. Sengupta, and K. Roy. 2017. Energy-efficient and improved image recognition with conditional deep

learning. ACM Journal on Emerging Technologies in Computing Systems 13, 3, Article 33, 21 pages.

[21] R. Zhao, W. Song, W. Zhang, T. Xing, J. H. Lin, M. Srivastava, R. Gupta, and Z. Zhang. 2017. Accelerating binarized

convolutional neural networks with software-programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays. 15–24.

[22] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo. 2017. Optimizing loop operation and dataflow in FPGA acceleration

of deep convolutional neural networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. 45–54.

[23] C. Zhang and V. Prasanna. 2017. Frequency domain acceleration of convolutional neural networks on CPU-FPGA

shared memory system. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. 35–44.

[24] J. Zhang and J. Li. 2017. Improving the performance of OpenCL-based FPGA accelerator for convolutional neural

network. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 25–34.

[25] J. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, and S. Jiang. 2016. SDA: Software-defined accelerator for large-scale DNN

systems. In Proceedings of the Hot Chips Conference. 28.

[26] S. Han, J. Pool, J. Tran, and W. Dally. 2015. Learning both weights and connections for efficient neural network. In

Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15). 1135–1143.

[27] L. Wang, W. Ouyang, X. Wang, and H. Lu. 2015. Visual tracking with fully convolutional networks. In Proceedings of

the IEEE International Conference on Computer Vision. 3119–3127.

[28] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, and R.

Boyle. 2017. In-datacenter performance analysis of a tensor processing unit. arXiv:1704.04760.

[29] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. 2016. YodaNN: An ultra-low power convolutional neural network

accelerator based on binary weights. In Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI.

236–241.

[30] D. Marković and R. W. Brodersen. 2012. DSP Architecture Design Essentials. Springer Science & Business Media.

Received March 2017; revised August 2017; accepted October 2017

ACM Journal on Emerging Technologies in Computing Systems, Vol. 14, No. 2, Article 18. Pub. date: July 2018.

