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Abstract—The important role of angiogenesis in cancer devel-
opment has driven many researchers to investigate the prospect-
s of noninvasive cancer diagnosis based on the technology
of contrast-enhanced ultrasound (CEUS) imaging. This paper
presents a deep learning framework to detect prostate cancer in
the sequential CEUS images. The proposed method uniformly
extracts features from both the spatial and the temporal dimen-
sions by performing three-dimensional convolution operations,
which captures the dynamic information of the perfusion pro-
cess encoded in multiple adjacent frames for prostate cancer
detection. The deep learning models were trained and validated
against expert delineations over the CEUS images recorded
using two types of contrast agents, i.e. the anti-PSMA based
agent targeted to prostate cancer cells and the non-targeted
blank agent. Experiments showed that the deep learning method
achieved over 91% specificity and 90% average accuracy over
the targeted CEUS images for prostate cancer detection, which
was superior (p < 0.05) than previously reported approaches
and implementations.

Index Terms—Contrast-enhanced ultrasound, prostate cancer
detection, convolutional neural network, targeted agent

I. INTRODUCTION

ROSTATE cancer is one of the most common forms of
cancer which accounts for 26% of all cancer diagnoses for
American men [1]. Till now, prostate cancer is still diagnosed
using systematic biopsies which consist of taking a dozen of
specimens from the prostate using a core needle. Systematic
biopsy is invasive and has low sensitivity; moreover, it carries
a risk of infection, sepsis and bleeding [2], [3]. A noninvasive
imaging technology to detect prostate caner at an early stage
could improve both prostate cancer diagnosis and treatment.
As a novel ultrasound technology, the CEUS can provide
useful modality for visualizing the dynamic patterns of the
blood flow, allowing medical experts to detect angiogenesis
for cancer diagnosis [4].
So far the researches of ultrasound based cancer detection
were mostly based on the traditional B-mode ultrasound and
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the color Doppler which could provide information on blood
flow in the cancer region [5], [6]. However, while there is
no doubt of its usefulness, the color Doppler is less suitable
for cancer detection than the emerging CEUS technology,
because the border of the color-coded velocity image strongly
depends on user-controlled settings such as the Doppler gain
and velocity range [7], which requires personal professional
expertise.

Due to its real-time availability at the bedside, ultrasound of-
fers a practical and cost-effective method for prostate imaging.
The CEUS is especially suitful for visualizing tumor angio-
genesis because of its ability of highlighting the blood flow
in microvasculature. Technically, the sequence of the CEUS
images records both the spatial and the temporal dynamic
patterns of the micro-bubble agent carried by blood flow,
which has been proven crucial for diagnosing cancer [8]. Fig.
1 shows the sequence of the CEUS images captured at the first
a few seconds after injecting the contrast agent in the blood
vessel. The region surrounded by red dots indicates the cluster
of cancer tissues. The label information of cancer region is
provided by clinical experts according to domain knowledge
and pathological test results. Coherent with clinical findings
[4], a distinct temporal pattern of climbing intensity can be
seen in the cancer region in Figl. The different blood perfusion
patterns of cancer and normal images are the intuitive and
clinical ground for machine learning based cancer detection.

So far, many researches of the CEUS based prostate cancer
detection were achieved by quantifying different parameters
of the measured time intensity curve (TIC). Several methods
were proposed for prostate cancer detection by the assessment
of tissue perfusion [9]-[12]; More recently, contrast ultrasound
dispersion imaging was proposed as an alternative method
for prostate cancer detection [13]-[15]. Kuenen estimated the
dispersion by fitting each TIC with a convective-dispersion
model in the time domain [13]. Later, indirect dispersion
estimation approaches were proposed, and the similarity be-
tween neighboring TICs were computed using different linear
measures such as spectral coherence and temporal correlation
[14], [15]. Gasnier and Schalk proposed respective approaches
for quantifying tumor vascularity in 3D-CEUS data [16],
[17]. Other parameters such as the dispersion coefficient,
velocity and mutual information were also estimated based on
the CEUS data to detect prostate cancer [18]-[20]. Clinical
research of the parametric approaches for prostate cancer
diagnosis has also been performed [21]. However, until now,
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Fig. 1.

the parameter based CEUS quantification has not shown
reliable cancer detection results in the prostate [22]. It is still
a challenge to automatically detect and segment cancer via
CEUS imaging [8], partly because the dynamic of the time-
intensity-curve varies with respect to different subjects, and
different locations, types and shapes of the cancer tissues.

Different from the parameter based approaches, the recent
development of the machine learning approaches has provided
another tool set for analyzing ultrasound images for prostate
cancer detection. Several learning based approaches including
the nearest neighbor classifier and the neural networks were
applied to detect tumor in static CEUS images [23], [24].
The latest research attempted to apply the recurrent neural
network (RNN) for ultrasound based tumor segmentation [27];
however, due to the computational complexity of its fully-
connected recurrent layer, the classic recurrent neural network
could only process static ultrasound images. On the other
hand, given the dynamic characteristic of the CEUS data,
it is preferable to extract the spatial-and-temporal features
uniformly from the CEUS video for cancer detection.

To address this challenge, this paper presents a deep learning
framework, which is based on the three-dimensional con-
volutional neural network (3D-CNN), to extract the spatial-
temporal features uniformly from the sequential CEUS images
for cancer detection. The convolutional neural networks are
a type of deep learning models in which trainable filters
and local pooling operations are applied alternatingly on the
input images [28], resulting in a hierarchy of two-dimensional
feature matrices [31]. To capture the temporal patterns in the
CEUS image sequences, a third dimension is incorporated
in the CNN model [30]. Since the 3D-convolutional feature
extractors operate in both the spatial and the temporal di-
mensions, the 3D-CNN is able to capture the dynamic CEUS
patterns reflecting angiogenesis. To detect and segment the
cancer tissues in the ultrasound video images, we split the
video frames into small image tensors (Fig. 2), and each small
image tensor is treated as a sample. After training the proposed
models using samples extracted from nearly forty gigabytes
of CEUS video clips, the 3D-CNN could accurately detect
the prostate cancer tissues in the video images of unknown
subjects. Due to its ability to extract features from three-
dimensional image voxels, the 3D-CNN has being recently

Example of the CEUS video frames examined for cancer detection. The region of interest surrounded using red dots indicates the prostate cancer.

applied for analyzing the MR and CT images [25], [26], but
few attempts have been tried to use the 3D-CNN for CEUS
based cancer detection.

Recent research shows that, by taking advantage of agent
material targeted to prostate cancer cells, the CEUS may
potentially provide higher sensitivity and accuracy for diag-
nosing prostate cancer [32]. As a preclinical study, our re-
search evaluated the CEUS data acquired with the anti-PSMA
(prostate specific membrane antigen) based contrast agent
which was targeted to the prostate cancer cells. Experimental
results showed that the 3D-CNN method outperformed other
learning based and parameter based approaches, and achieved
over 90% average accuracy for prostate cancer detection.
Moreover, since the targeted agent led to 26% higher increase
of intensity in the region of cancer tissues than the blank
non-targeted agent, the examined learning based approaches
generally showed 6.70% — 18.77% higher accuracy using the
targeted contrast agent in our experiments.

The rest of this paper presents the deep learning framework
we built for prostate cancer detection, which is organized as
follows. We describe the material and data collected in Section
2. The spatial-temporal convolution operation and the 3D-
CNN architecture are presented in Section 3. The experimental
results are reported in Section 4. We conclude in Section 5
with discussions.

II. MATERIAL AND DATA

Different from standard B-mode ultrasound or color Doppler
imaging, the CEUS uses gas-filled bubbles as contrast agents
to enhance the reflection of the ultrasound waves. The bubbles
are injected intravenously into the mouses systemic circulation
at second 0, and the ultrasound waves are directed on the
region of interest (ROI). When the contrast agent in the blood
flow passes the imaging window, as shown in Fig. 1, the
bubbles reflect a unique echo that stands in sharp contrast
to the surrounding tissue due to the orders of magnitude mis-
match between bubble and tissue echogenicity. The ultrasound
system converts the strong echogenicity into contrast-enhanced
sequential images to show the blood flow patterns in cancer
and normal tissues.

In our research, two types of contrast agents were construct-
ed to facilitate prostate cancer imaging, i.e. the targeted agent

(c) 2018 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2835444, [EEE/ACM

Transactions on Computational Biology and Bioinformatics

A: positive

B: negative

C: discarded

200
A
B
150 c
°
>
2 100
g
O]
0
0 5 10

time/s

] b VPSS
BRSNS aEa
A B A B

Fig. 2. Three examples of the examined CEUS tensor image samples. The right diagram shows the average time intensity curve associated with each sample.

TABLE I
THE CEUS SAMPLE SETS CONSTRUCTED FOR TRAINING,
VALIDATING AND TESTING THE DEEP LEARNING MODELS

Train S
Agent type Negative | Positive Validation Test Total
Targeted 2479 2479 9372 7511 21841
Non-targeted 2769 2769 9715 10485 | 25738

made of anti-PSMA (prostate specific membrane antigen)
and the blank contrast agent. Detailed information about the
bubble agents constructed can be found in the experimental
research [32]. Both types of bubble agents were of the size
487.60 £ 33.55 nm. To evaluate the proposed method, we
performed CEUS on twenty different anaesthetized animal
xenografts (lab mice implanted with human prostate cancer).
For comparison, two respective CEUS tests with targeted and
non-targeted agents were performed on each subject with thirty
minutes’ interval.

The CEUS images examined were captured by the iU22
ultrasound system (Philips, Amsterdam, The Netherlands), and
the raw data were 505x246 AVI videos. Fig. 2 shows an
example of the CEUS image for prostate cancer detection. The
region surrounded by the red dots indicates the prostate cancer
implanted under the xenograft’s skin. The blood perfusion
process captured in each test lasts about 10 seconds starting
from the moment of injecting the contrast agent. Since the
blood perfusion process was relatively slow, we extracted one
frame per second to avoid information redundancy in adjacent
frames. For cancer detection, each frame was split into a group
of 23-pixel-by-23-pixel windows with a step size of five pixels.
For each subject, ten sequential frames were extracted and
reconstructed as a set of 23*23*10 image tensors. The three-
dimensional tensor samples were later used for training and
testing the proposed model. Each tensor sample was labeled

as a negative or positive cancer sample based on professional
expertise and histopathological analysis results.

One consideration of CEUS based cancer detection is un-
balanced data. Specifically, in the raw data set, the amount
of negative samples (78277 samples) were significantly larger
than the amount of positive samples (9073 samples). The
unbalanced data might degrade the sensitivity and accuracy
for cancer detection; therefore, the raw negative samples in
the area with no perfusion were removed. Technically, 39721
negative samples with less than 3.5% intensity increase were
discarded, leaving 21841 targeted samples and 25738 non-
targeted samples. Respective models were built using the
targeted and non-targeted CEUS samples for comparison. The
training set contained equal number of positive and negative
samples for balanced training. Detailed information of the
sample sets constructed and examined are shown in Table I.

Fig. 2 shows three examples of the tensor samples con-
structed, including one positive cancer sample A, one negative
sample B and one discarded sample C. As shown in Fig.
2, different temporal patterns of increased intensity can be
found in the compared CEUS tensor samples. Coherent with
the clinical observation that the prostate cancer tissues usually
have richer blood flow [4], the positive sample A has higher
intensity increase compared to the negative sample B. The
different temporal patterns of blood flow between the normal
and cancer tissues are the intuitive and medical basis of the
learning based methods for automated cancer detection.

III. METHOD

The proposed method attempts to detect prostate cancer in
the ultrasound sequential images automatically. As described
in the previous section, the frames of the CEUS videos were
split into a set of three-dimensional tensor samples. Each sam-
ple was labeled as a positive or negative cancer sample. A 3D-

(c) 2018 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2835444, [EEE/ACM

Transactions on Computational Biology and Bioinformatics

4x4x4 3D

Convoluhoﬂ

2x2
r Subsampllgg
Input I
10@23x23

7* 3@20x20

Fig. 3.

r Convoluliog

Negative

. .
. .
. .
I 2x2 r 4x4 Full
Subsampling r Convolutiop connection,
.
.

3x3x4 3D

Positive

r

I I I r C5:
s 128@1x1
c3: 4"12@4x4

412@8x8

7*3@10x10

The three dimensional convolutional neural network built for extracting and classifying the CEUS tensor samples. The framework consists of three

convolutional layers, two sub-sampling pooling layers and one fully-connected classification layer.

convolutional neural network was built to uniformly extract the
spatial and temporal features, and classify the tensor samples
as cancer or normal. Fig. 3 shows the convolutional neural
network we built, which consists of three types of layers, i.e.
three convolutional layers, two sub-sampling pooling layers
and one fully-connected classification layer.

In a standard two-dimensional convolutional neural net-
work, the convolutional layers are two-dimensional image
filters which may magnify and extract the discriminant features
of the input images. Formally, the value of a neuron vij at
position (z, y) of the jth feature map in the ¢th layer is denoted
as follows:

Pi-1Q;—1
oL S el

m p=0 ¢=0

+bij) (D

where m indexes the feature maps in the (¢ — Dth layer
connected to the current jth feature map, w; ]m is the weight of
position (p, ) connected to the mth feature map, P; and ; are
the height and the width of the two-dimensional convolution
kernels, and b;; is the bias of the jth feature map in the ith
layer. The function g(x) = m is the standard sigmoid
activation function adopted in neural network models.

Since the CEUS samples are sequential images, it is natural
to use a three-dimensional convolutional layer to extract the
spatial-temporal features from the 3D-tensor samples. One
advantage of the convolutional neural network is its ability
to extract multiple feature maps using different convolutional
kernels. Suppose the value of the neuron v;/” at position
(z,y, z) of the jth feature map in the ith layer is given by

Pi-1Q;—1R;—-1
- r o (@+)(y+a) (z+7)
xyz B Z Z Z Z ’U)qu (z—lp)my ! +bij)
m p=0 ¢q=0 r=0
2

where m, b;;, P; and @); have the same definitions as the
2D model, R; is the size of the kernel along the temporal
dimension, w?1" is the value of position (p, ¢, r) connected to
the mth feature map. Through 3D convolution, the CNN can
extract the spatial and temporal information of CEUS data
simultaneously.

The pooling layer in the convolutional neural network is
a sub-sampling layer commonly constructed after the convo-
lutional layer. The most common pooling operation is max-
pooling earlier adopted in [30], which is used throughout this

paper. The max-pooling operation can be written as follows:

Q = Max o jm, * u(n,n,n) 3)
,7,m
where u(n, n,n) is a three-dimensional window function used
to define the compressing patch of the convolutional layer, and
@ is the maximum in the neighborhood.

After several convolutional and pooling layers, the classifi-
cation task in the neural network is done via a fully-connected
layer. As in regular neural networks, neurons in a fully-
connected layer have full connections to all activations in the
previous layer. Their activations can hence be computed with
a matrix multiplication followed by a bias offset. For cancer
detection, the output of the fully-connected layer consists of
two neurons which represent positive and negative cancer
samples respectively (Fig. 3).

An automatic learning process can be applied to estimate
the parameters of the three-dimensional CNN. Our implemen-
tation details are based on those of the standard CNN as
described in [33], [34]. The training algorithm is based on the
stochastic diagonal Levenberg-Marquardt method [33], [34].
All the model parameters are randomly initialized as in [33],
[34]. The learning rate adopted at the start of training process
was 0.05. If no improvement was detected after 50 iterations,
the learning rate was adaptive reduced, and the finial learning
rate to stop the training process was 10~5. The mini-batch size
was 50. We used the [ regularization in training process to
prevent over-fitting, and the regularization factor was 0.0005.

IV. EXPERIMENTS

Our experiments evaluated the proposed framework for
prostate cancer detection based on both targeted and non-
targeted CEUS data over 20 xenograft subjects. The exper-
iments evaluated the targeted and non-targeted samples inde-
pendently for comparison. As shown in Table I, the examined
data sets were extracted from 38.2 gigabytes of raw video
images. The video frames were split into three-dimensional
tensor samples. After discarding the samples in which no
perfusion was detected, about 47.57 thousand image sequences
were arranged for training, validating and testing the proposed
framework.

The CEUS data set consisted of two groups of subsets,
i.e. the targeted group of 21844 samples and the non-targeted
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TABLE II
ARCHITECTURE OF THE 3D-CNN BASED FRAMEWORK BUILT FOR
AUTOMATED CANCER DETECTION.

No. Layer type Input size  Kernel size  Feature maps
1 convolutional 23%23*10 4¥4%4 3
2 pooling 20%20%7 2%2%] 3
3 convolutional 10*10*7 3%3%4 12
4 pooling 8*8*4 2%2%] 12
5 convolutional 4%4%4 4%4%] 48
6 fully-connected 128%*1 - 1
TABLE III

ACCURACIES OF DIFFERENT NETWORKS OVER THE VALIDATION SET.

Number of kernels Data sets
Convolution 1 | Convolution 2 | Non-targeted Targeted
4 81.41 £4.63 | 84.86 +4.90
2 8 79.35+5.10 | 85.64 + 2.53
12 80.88 £4.67 | 85.20 £ 3.01
4 80.32 +£4.67 | 83.56 £ 4.30
3 8 80.90 £ 5.20 | 84.99 + 4.86
12 84.22 +£1.27 89.90 + 1.14
4 79.25+ 7.50 | 85.25+6.03
4 8 79.16 + 5.51 | 85.23 +5.17
12 80.28 £5.96 | 85.59 £ 4.38

group of 25738 samples. Each group contained three subsets,
i.e. the training set, validation set and test set. The training
samples were used to fit the learning based models, and the
validation samples were used to evaluate the models with d-
ifferent hyper-parameters. The measurements of performance,
including sensitivity, specificity and the average accuracy were
calculated using the test set.

A. Network Architecture and Hyperparameters

The network architecture of the proposed framework is
listed in order in Table II. Specifically, it consists of six layers,
i.e. three convolutional layers, two pooling layers and one
fully-connected classification layer. The six layers are stacked
as a pipeline, where each layer uses the output of the previous
layer as input. Since the input data are three-dimensional
image samples, the kernels used in the convolutional and
pooling layers are also three dimensional.

One advantage of the convolutional neural network is its
ability to extract more than one feature maps for each convo-
lutional layer using different kernels. The number of kernels
determines the number of features extracted for classification,
which is an important trade-off between performance and
computational complexity. Our experiment evaluated different
networks with 2 to 12 kernels in the first and second con-
volutional layer. Table III lists the classification accuracies
of the examined networks. Generally speaking, for the first

TABLE IV
ACCURACIES OF THE PROPOSED FRAMEWORK WITH DIFFERENT SIZES OF
THE CONSTRUCTED CEUS SAMPLES.

Data sets Size of the input image samples
o 21%21%10 | 23%*23*10 | 25%*25*10 | 27*27*10
Non-targeted 82.55 84.22 84.07 81.65
+0.76 +1.27 +0.09 +1.05
Targeted 87.39 89.90 87.71 87.93
+0.23 +1.14 +0.52 +0.09
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Fig. 4.

Comparison between the targeted and non-targeted CEUS images
for cancer detection. (a) dot circle indicates the region of prostate cancer, (b)
the average intensity of pixels in the cancer region. Lower figures are the
color maps of estimated probability of being cancer over the (c) targeted and
(d) non-targeted CEUS frames, with red indicating high probability and blue
indicating low probability.

convolutional layer, the networks with three kernels achieved
the highest accuracy. And for the second convolutional layer,
higher classification accuracies were achieved when twelve
kernels were incorporated.

As described in Section 3, our experiment split the CEUS
video frames into small image windows for cancer detection.
Our experiment examined experiment settings of different
window sizes. As shown in Table IV, the classification ac-
curacy is relatively robust with different window sizes. Since
smaller window sizes led to higher spatial resolution for cancer
detection, we chose the window size of 23*23 in our research.
And it was interesting to see that the targeted CEUS sets
showed approximately two to four percent higher classification
accuracy than the non-targeted sample sets.

B. Analysis of Targeted and Non-targeted Results

As the frontier of CEUS imaging research, the contrast
agents made of material targeted to cancer cells has been
recently applied for diagnosing the prostate cancer [35]. As a
primary attempt for targeted CEUS based cancer detection, our
experiments examined the anti-PSMA based targeted contrast
agent, and compared it with the blank non-targeted agent for
the application of prostate cancer detection.

Fig. 4 shows the change of intensity for the same subject
injected with targeted and non-targeted contrast agents. Sub-
graph a illustrates the cancer region, and subgraph b compares
the average increase of intensity in the cancer region. Though
both types of the agents increase the average intensity in the
cancer region, the targeted agent results in significantly higher
average intensity than the non-targeted agent at the end of the
perfusion process.

Experiment results showed that, in average, the targeted
CEUS agent achieved 25.70% higher increase of intensity than
the non-targeted agent after calibration, which was coherent
with the earlier experimental research [32]. For the application
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TABLE V
COMPARING WITH RECENT RESEARCHES OF THE CEUS BASED PROSTATE
CANCER DETECTION

‘Work Parameters Subjects  Sensitivity  Specificity ~ Accuracy
This - 20 82.83 91.45 90.18
[15] T 8 77.30 86.00 -

p 8 78.10 81.60 —

[36] r 21 77.90 82.40 —

p 21 77.30 81.30 -

K 8 77.30 81.30 —

[18] Pe 10 73.70 79.80 —

[19] v 25 72.50 82.10 —
[?] T 19 71.00 75.00 73.00
[38] WIT 19 75.00 68.20 72.00
~,MTT,r,PT 19 79.00 80.00 81.00

[20] 1 23 71.00 71.30 -

r 23 69.00 68.90 —

p 23 67.90 67.30 -

FWHM 23 62.20 66.80 —

of automated cancer detection, higher increase of intensity in
the cancer region could partly explain the higher accuracy
achieved by the examined approaches over the targeted data
sets.

The lower subgraphs of Fig. 4 illustrate the 3D-CNN esti-
mated risk of prostate cancer. It seems that, the targeted CEUS
agent could increase the sensitivity and specificity for prostate
cancer detection. Specifically, the sensitivity, specificity and
accuracy were 10.43%, 5.97% and 7.20% higher over the
targeted test sample set than over the non-targeted sample set
in our experiments.

C. Comparing with Other Approaches

We calculated the average sensitivity, specificity and accu-
racy of the proposed method over the test sample set, and
compared the results with the state-of-the-art CEUS based
approaches for prostate cancer detection. So far, most existing
approaches were parameter based methods, which calculated
and used different perfusion or dispersion related parameters
for prostate cancer detection. The parameters included the
temporal correlation (r), the spectral coherence (p), the kappa
coefficient (x), the mutual information (/), and the peak time
(PT), wash-in time (WIT) and mean transit time (MTT) of the
time intensity curve [15], [20], [36]. The recently examined
parameters of the dispersion velocity (v) , the Péclet number
(Pe) and the full-width at half maximum (FWHM) of the TIC
were also compared [18], [19]. Besides single parameter based
approaches, the multi-parametric models were also compared
with the proposed method [38]. Table V lists the compared

TABLE VI
COMPARING WITH OTHER MACHINE LEARNING BASED APPROACHES

Methods Sensitivity Specificity Accuracy

Proposed method 82.98 + 6.23 91.45+6.75  90.18 £ 6.62
Logistic 51.15+4.05  75.214+4.51 71.55+5.87
kNN 62.98 £25.12 93.50 £4.60 88.43 £ 8.22
Random Forest 76.95+23.05 92.05+4.15 89.79 +£7.23
FLDA 50.40 £6.20 80.68 £3.12  75.89 £+ 5.57
J48 70.85+£22.65 83.50+£6.30 81.24+4.10
Decision Table 67.53 £27.47 86.83+5.27 83.53+5.61

(a) PCA before feature extraction

40 *  Negative

Positive
20
0
-20
-20 0 20 .40
(b) PCA after feature extraction
2 *  Negative
*  Positive
0
e Vo o't %
-2 ¢yl

Fig. 5. Illustration of the (a) input CEUS samples and the (b) output
activations of the last convolutional layer of the 3D-CNN model. Both the
input and output data are linearly embedded in the two-dimensional subspace
for visualization using the Principal Component Analysis.

results. In summary, the proposed method showed 5.45%
to 24.65% higher specificity and 3.83% to 20.63% higher
sensitivity than the compared parameter based approaches.
The reasons why the deep learning approach achieved higher
performance may partly be because that, most parameter
based methods were based on different assumptions about
the perfusion or dispersion process. Since the deep learning
approach doesn’t require any assumptions about the perfusion
process, it is more robust against different types of noises.

Besides the parameter based approaches, we also performed
a group of experiments to compare the proposed deep learning
framework with conventional machine learning approaches.
Table VI lists the detection results over the targeted CEUS
test sample set achieved by different learning models, i.e.
the Logistic Regression, the k-Nearest Neighbor classifier,
the Random Forest, the Fisher Linear Discriminative Analysis
(FLDA), the J48 Decision Tree and the Decision Table. All the
compared approaches used the same experimental setting. All
models were trained using equal number of positive and neg-
ative samples. In summary, the 3D-CNN showed the highest
sensitivity and average accuracy than the conventional machine
learning approaches. The experiment was also performed over
the non-targeted CEUS sample set. It was interesting to find
that all the learning based approaches showed higher sensitiv-
ity (3.17% —16.48%) and higher specificity (6.15% —13.75%)
over the targeted data than over the non-targeted data.

We also compared proposed method with the SVM, the
naive Bayes and the neural network classifier. All the com-
pared classifiers were trained using the same balanced data set.
Experiment results show that, the compared approaches have
comparable specificity as the 3D-CNN model; however, the
sensitivity of the SVM (64.70%), the naive Bayes (54.98%)
and the neural network (61.60%) were 18.13-27.85% lower
than the 3D-CNN model. This may be caused by their high
error rate over the positive cancer samples. It seems that
the 3D-CNN model is more robust for CEUS based cancer
detection than the conventional machine learning methods.
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The higher performance achieved by the deep learning
framework can be better understood by visualizing the nonlin-
earity of the data. Possibly due to the infiltration characteristic
of cancer, the positive and negative cancer samples are highly
non-separable in linear subspaces. Fig. 5 illustrates the original
CEUS samples (gray dots) and the output of the third convo-
lutional layer of the 3D-CNN (red dots). Both the input and
the output data are vectorized and reduced to two dimensions
using the Principle Component Analysis for visualization.
Before feature extraction, the positive and negative CEUS
samples tend to blend (Fig. 5.a); However, after the nonlinear
3D-CNN based feature extraction, the positive and negative
samples (Fig. 5.b) become more separable, which may explain
the relatively high classification accuracy achieved by the
proposed deep learning framework.

It is worth noting that, the testing data set of our experiments
were not balanced, which was coherent with clinical practice.
To evaluate the proposed method, we calculated the receiver
operating curve (ROC), and compared the area under the curve
(AUC) of the examined learning based approaches. In general,
the 3D-CNN (0.980) showed higher AUC measurement than
all the compared machine learning approaches, including the
SVM (0.875), the Logistic Regression (0.782), the Neural
Network (0.950), the kNN (0.804), the Random Forest (0.891)
and the Naive Bayes (0.790).

D. Computational Complexity

One important consideration for deep learning based ap-
proach is computational complexity. Generally speaking, the
computational complexity of training a convolutional neural
network is higher than training a conventional neural network.
Fortunately, the weight-sharing strategy significantly reduces
the number of parameters in the convolutional layers and
saves computation time. Technically, our experiments were
performed using a regular computer with single Intel Core
13-3240 3.4-GHz processor and 10-GB memory. The training
process of a typical 3D-CNN (Table II) consumed about half
an hour over the examined data sets. Recent research indicated
that the training process of the CNN could be accelerated
using off-the-shelf graphics processing units (GPUs). Since the
proposed 3D-CNN is a spatial-temporal variant of the CNN,
any GPU-based implementations of the CNN can be easily
modified to support the proposed framework for large-scale
implementations.

V. DISCUSSION AND CONCLUSION

Though noninvasive early detection of prostate cancer is
of great importance for cancer diagnosis and treatment, at
present, accurate cancer detection based on contrast enhanced
ultrasound images is still challenging due to the complexity of
the angiogenesis process. This paper presents a deep learning
framework to detect prostate cancer in the CEUS videos. By
uniformly extracting the features from both the spatial and the
temporal dimensions, the proposed method achieves over 90%
specificity and average accuracy, which is competitive with the
state-of-the-art prostate cancer detection approaches.

As far as we know, this could be the first attempt to apply
the CEUS with the targeted contrast agent for automated
prostate cancer detection. We examined the recently invented
anti-PSMA based agent targeted to prostate cancer cells, and
compared it with the non-targeted blank agent. The experiment
indicated that, the examined targeted agent increased the vol-
ume of agent aggregated in the cancer region. As a result, the
targeted models achieved over ten percent higher sensitivity
for prostate cancer detection. The quantitative cancer detection
results may help to evaluate different contrast agents for cancer
diagnosis.

In summary, this research is a preliminary attempt to apply
deep learning for CEUS based cancer diagnosis. Experiment
showed that a middle-size convolutional neural network could
achieve relatively high sensitivity and accuracy for prostate
cancer detection. So far, our research has been based on the
CEUS videos recorded with experimental targeted contrast
agent, which limited the size of available data. In the future,
we plan to extend our research and take advantage of large-
scale clinical CEUS data for prostate cancer diagnosis. With
more qualified data, we can build more advanced deep learning
models such as the ResNet and GoogLeNet for end-to-end
prostate cancer detection.
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