IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 11, NO. 2, APRIL 2017 255

Data-Driven Sampling Matrix Boolean Optimization
for Energy-Efficient Biomedical Signal
Acquisition by Compressive Sensing
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Abstract—Compressive sensing is widely used in biomedical
applications, and the sampling matrix plays a critical role on
both quality and power consumption of signal acquisition. It
projects a high-dimensional vector of data into a low-dimensional
subspace by matrix-vector multiplication. An optimal sampling
matrix can ensure accurate data reconstruction and/or high com-
pression ratio. Most existing optimization methods can only pro-
duce real-valued embedding matrices that result in large energy
consumption during data acquisition. In this paper, we propose an
efficient method that finds an optimal Boolean sampling matrix
in order to reduce the energy consumption. Compared to random
Boolean embedding, our data-driven Boolean sampling matrix can
improve the image recovery quality by 9 dB. Moreover, in terms of
sampling hardware complexity, it reduces the energy consumption
by 4.6 X and the silicon area by 1.9 over the data-driven real-
valued embedding.

Index Terms—Compressive sensing, low power sensor, quan-
tization, resistive random-access memory (RRAM), sampling
matrix optimization.

I. INTRODUCTION

IOMEDICAL wireless circuits for applications such as

health telemonitoring [1], [2] and implantable biosensors
[3], [4] are energy sensitive. To prolong the life-time of their
services, it is essential to perform the dimension reduction
while acquiring original data. The compressive sensing [5] is
a signal processing technique that exploits signal sparsity so
that signal can be reconstructed under lower sampling rate than
that of Nyquist sampling theorem. The existing works that
apply compressive sensing technique on biomedical hardware
focus on the efficient signal reconstruction by either dictionary
learning [4], [6] or more efficient algorithms of finding the
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sparsest coefficients [1], [2], [7]{9]. However, these works, by
improving the reconstruction on mobile/server nodes instead of
data acquisition on sensor nodes, can only indirectly reduce the
number of samples for wireless transmission with lower energy.
In this work, we aim to achieve both high performance signal
acquisition and low sampling hardware cost at sensor nodes
directly.

In compressive sensing, the sampling is performed by mul-
tiplying the original signal vector with a linear embedding
matrix, which projects the high-dimensional data vector into a
low-dimensional subspace with preserved intrinsic information.
The concise representation is called a low-dimensional embed-
ding. The sampling matrix can be either random, generally
optimized or optimized towards specific dataset. The random
sampling matrices, Bernoulli or Gaussian, though easier to
construct, have two major limitations. Firstly, the guarantee
on signal recoverability using random sampling matrices is
only probabilistic and therefore large recovery error may be
incurred. Secondly, its construction is independent on the data
under investigation, and therefore the geometric information of
dataset cannot be exploited. The generally optimized sampling
matrices, such as Reed-Muller code [10], [11] or Puffer trans-
formation [4], have deterministic recoverability by constructing
matrices with minimized mutual coherence. However, they are
still independent on data type of interest so that the performance
cannot be maximized. The data-driven optimized embedding,
on the other hand, can leverage geometric structure of dataset in
particular application with additional learning phase, which is
especially beneficial for biomedical sampling hardware where
the target data type is predetermined. Signal acquisition by a
data-driven optimized sampling matrix can preserve more in-
trinsic information of original signal, and therefore ensure more
accurate signal reconstruction and/or higher compression ratio.

Most existing data-driven optimization methods only pro-
duce real-valued embedding matrices [12]. However, the hard-
ware mapping of real-valued sampling matrix is much more
power consuming than that of Boolean matrix. The reason is
that for real-valued embedding operation, the required hard-
ware resources, primarily full-adders, are quadratically depend-
ing on the precision required, while only linearly for Boolean
embedding mapping. Therefore, a Boolean sampling matrix is
preferred as the significantly reduced hardware resources can
contribute to higher energy- and area-efficiency. In fact, the
random Bernoulli matrix is the most widely used sampling
matrix in existing CMOS based implementations for low power
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Fig. 1. The comparison of information loss of NuMax through truncation
quantization versus proposed quantization. This work achieves both high signal
recovery performance as well as low sampling hardware cost by proposed
quantization algorithm.

consumption [4], [7], [13]. In addition, the recent emerging
resistive random-access memory (RRAM) [14]-{16] in crossbar
(or cross-point) structure [14] can provide intrinsic fabric for
matrix-vector multiplication, which potentially enables both
energy- and area-efficient hardware implementation of linear
embedding. However, the limited RRAM programming resolu-
tion also favors only Boolean embedding matrices to be mapped
to RRAM crossbar structure.

Therefore, the hardware realization of sampling matrix faces
a dilemma. On one hand, if data-driven optimized real-valued
embedding, such as NuMax [12], is mapped for better recov-
ery quality, large power overhead will be expected. On the
other hand, if non-data-driven random Boolean embedding or
Boolean Reed-Muller [10], [11] embedding is mapped for bet-
ter hardware energy-efficiency, high signal recovery accuracy
cannot be accomplished. Such trade-off is illustrated in Fig. 1.
Fig. 1 also reveals that quantization of NuMax by straightfor-
ward truncation works only above precision of 16-bit, below
which it will incur significant performance degradation. There-
fore, without data-driven optimized Boolean embedding, the
advantages of both sides cannot be achieved simultaneously.
The challenge to perform data-driven Boolean embedding op-
timization is that, with large amount of dataset involved in the
sampling matrix optimization, only convex methods with real-
valued optimized matrices are feasible.

In this paper, towards high performance (data-driven) and
low power (Boolean) sampling, instead of optimizing Boolean
embedding on original dataset, we propose an optimizing al-
gorithm that transforms a data-driven optimized real-valued
sampling matrix to a Boolean sampling matrix. The proposed
optimization flow is illustrated in Fig. 2. As the input optimized
real-valued embedding matrix is optimized towards the spe-
cific dataset, and the proposed algorithm seeks least intrinsic
information loss, so the resulting Boolean embedding matrix is
still optimized towards the same training dataset. In addition,
we have discussed the corresponding hardware implementa-
tions based on both CMOS technology and emerging non-
volatile resistive random-access-memory (RRAM) technology
for obtained optimized Boolean embedding. Such capability
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Fig. 2. The proposed flow for data-driven Boolean sampling matrix

optimization.

was first exploited in our preliminary work [17]. The numerical
experiments demonstrate that the proposed data-driven Boolean
embedding can combine both high signal quality and also low
sampling power. Specifically, it can improve image recovery
quality (RSNR) by 9 dB compared to the non-data-driven
Bernoulli embedding, and improve energy efficiency by 4.6x
than that of data-driven real-valued sampling circuit.
The contributions of this paper are summarized as below:

* To our best knowledge, the data-driven optimized
Boolean sampling matrix is constructed for the first time.
Being Boolean and optimized towards dataset, we achieve
both highest signal recovery quality and best hardware
energy efficiency among all existing schemes.

* We formulate the problem of finding best transformation
that quantizes real-valued sampling matrix into Boolean
matrix with minimal information loss.

The rest of this paper is organized as follows. Section II intro-
duces the background of compressive sensing and near-isometric
embedding. Section III presents the sampling hardware for
Boolean embedding with the corresponding optimization prob-
lem formulated. Sections IV and V detail the two proposed
Boolean embedding optimization algorithms. Numerical results
are presented in Section VI with conclusion in Section VII.

II. BACKGROUND
A. Compressive Sensing and Isometric Distortion

Recently, the emerging theory of compressive sensing has
enabled the recovery of undersampled signal, if the signal is
sparse or has sparse representation on certain basis, such as
wavelet transformation and Fourier transformation. And the
recovery can be achieved by solving

minimize ||z1
zeRN
subjectto y = ¥Qx (1)

RNXN
RMXN

where 2 € RY is the sparse coefficients vector and €
is the basis on which the original signal is sparse; U €
is the sensing matrix and y € RM (M < N) the undersampled
data in low dimension. To ensure a successful recovery, the
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TABLE 1
NOTATION TABLE OF USED MATHEMATICAL SYMBOLS

Descriptions
4 the isometric distortion of the restricted isometry property (RIP)

T original high-dimensional sparse signal to be sampled by compressive sensing
Y sampled low-dimensional signal by compressive sensing

Q sparse basis/dictionary

T reconstructed/recovered original signal

v sampling matrix
s

T

t;

Symbols

Boolean sampling matrix losslessly quantized from real-valued W
orthogonal RIP preserving transformation matrix for quantization
i¢p, row of T obtained during row-generation algorithm
1/37 itp TOoW of U obtained during row-generation algorithm

X training dataset x = {x1, z2, ..., x; } for sampling matrix optimization
S(x) set of all pairwise distances among every two x in x as input for NuMax
x’ testing dataset that has no overlap with training dataset x
OLRS standard deviation of RRAM resistance in low resistance state (LRS)
OHRS standard deviation of RRAM resistance in high resistance state (HRS)
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Fig. 3. The embedding circuit by CMOS matrix-vector multiplier.

sensing matrix (V) must meet the restricted isometry property
(RIP), which is defined as: if there exists a § € (0, 1) such that
the following equation is valid for every vector v € RY

(1= 0)vll3 < 1Pv]3 < (1 + ) vll3 2

then ¥ has the RIP with isometric distortion constant §. The
notations of all used symbols are summarized in Table 1.

B. Optimized Near-Isometric Embedding

The easiest way to construct a matrix with RIP is to generate
a random matrix. The work [18] proves that random matrix is
of a very high possibility to satisfy RIP, yet not deterministic.
Different from the random Bernoulli sampling matrix that the
RIP is probabilistic, a data-driven sampling matrix can ensure
the RIP of the finite given data points. One recent work in
[12] proposed the NuMax framework to construct a near-
isometric embedding matrix with deterministic RIP. Given a
dataset x = {x1,22,...,7;} € RY, the NuMax produces an
optimized continuous-valued embedding matrix ¥ so that every
pairwise distance vector v for x can preserve its norm after
embedding up to a given distortion tolerance 0y, -

Once the optimized NuMax sampling matrix ¥ is ob-
tained, the signal acquisition y = WQx can be performed by
multiplying the embedding matrix ¥ with signal vector Q.
The conventional CMOS circuit based data acquisition front-
end that performs real-valued embedding is shown in Fig. 3.
The sampling circuit has two major components, the SRAM
memory that stores the embedding matrix, and the multiplier-
accumulators (MAC) that perform multiplication and addition.
For an embedding matrix ¥ € R™*" (m < n), in each cycle,

As A, Ay Ao
Bo A3B) AzBol A1Bo AoBo
By AsB, A,B4] A1B4] AoB
B, AsB, A,B, AB) AoB)
Bs A3B3l A, B A1B3) AoBs3
7 Ps Ps
S'n X i
Tl
_ : Out
1-Bit full //
/ adder
X |
Cout v 2's complement (b)
SOIJt
Active per n cycles
Acc.+[ T
> “ A ' =
= I 251§ H-out
In, — 2 g complement| @
[ ]| Acc. - . a— |
DL
In ! m =
2 Clk |nz

(©)

Fig. 4. The implementation of (a) MAC with multiplier in 4-bit resolution
for real-valued embedding matrix and (b) MAC for {—1, 1}™*" embedding
matrix (¢) MAC for {—1, 1}"*™ embedding matrix with power optimization.

m MACs multiply one element of input vector Qx with one
column of ¥, and then add with previously accumulated results.
Therefore, it requires n cycles to obtain the embedded signal y.

As NuMax produces real-valued W, the precision of ¥ sub-
stantially determines the hardware complexity. For example, a
multiplier in MAC with 4-bit resolution, shown in Fig. 4(a),
requires 16 full-adders. In fact, the number of required full-
adders generally depends quadratically on the precision of both
Qx and V. For the typical precision of real-valued elements in
sampling matrix, 16-bit (Fig. 1) resolution may lead to as many
as hundreds of full-adders for each MAC, which makes the real-
valued NuMax embedding less appealing for signal acquisition
hardware mapping.

III. BOOLEAN EMBEDDING FOR SIGNAL
ACQUISITION FRONT-END

A. CMOS-Based Boolean Embedding Circuit

The mapping of a Boolean embedding matrix can eliminate
the usage of multipliers. For a {0, 1}"*" Boolean embedding
matrix, the MAC only accumulate signal data when Boolean
multiplicand is 1. For a more general {—1, 1}™>" Boolean ma-
trix, the Boolean multiplicand indicates addition or subtraction
for the signal data. That is to say, the required resources of full-
adders are only linearly depending on the precision of signal z.
As such, the hardware resource can be significantly reduced.

Specifically for the {—1,1}™*" embedding matrix mapping,
the multiplication by —1 requires the calculation of 2’s com-
plement. The intuitive approach is illustrated in Fig. 4(b). The
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Fig. 5. The embedding circuit by emerging non-volatile RRAM crossbar.

Ing signal is 1 for multiplying —1 and O for multiplying 1.
To obtain the 2’s complement, the XOR logic is used to get
the complement of each bit and the Cy (carry 0) is applied as
well. However, the 2’s complement calculation close to input
will incur substantial dynamic power for the combinational
logic. Instead, the circuit diagram in Fig. 4(c) first accumulates
all data to be multiplied by 1 and —1 separately, and the
subtraction is performed at the very last cycle. Therefore, the
2’s complement circuit is only active every n cycles, which can
greatly improve the power efficiency.

To be compatible with optimized sampling matrices such as
Reed-Muller code [10], [11] and NuMax [12], SRAM block is
required to store the matrix and provide reconfigurability. For
non-optimized sampling matrices such as random Gaussian and
Bernoulli, apart from storing the matrix in SRAM, the matrix
can also be generated at runtime, which can improve hardware
efficiency. In practice, the pseudo-random number generator
(PRNG) is used [7], [13], which avoids the power-consuming
SRAM arrays. As PRNG produces 0/1 sequences with a pre-
determined pattern, one of the issue for PRNG is the self-
coherence. For example, a 8-bit per cycle PRNG has a period of
256 (2%), and when filling a n x 256 sampling matrix by rows
with such 0/1 sequences, all rows of the matrix will be identical.
This can be overcome by increasing the number of bits the
PRNG produces per cycle at a cost of higher hardware com-
plexity. With limited hardware resources, the pseudo-random
numbers generated by PRNG usually lead to performance
degradation of signal acquisition compared to stored random
sampling matrix.

B. RRAM Crossbar Based Boolean Embedding Circuit

The emerging resistive random-access-memory (RRAM)
crossbar [14], [15] provides an intrinsic in-memory fabric
of matrix-vector multiplication, which is proposed in Fig. 5.
Compared to CMOS embedding circuit, RRAM crossbar based
approach can provide three major advantages: 1) embed the
sensing matrix [¥ in (1)] in-memory without the need for
loading it externally each cycle, 2) perform the matrix-vector
multiplication in single cycle, and 3) minimize the leakage
power due to its non-volatility. A RRAM crossbar structure is
composed of three layers: horizontal wires at top layer, vertical
wires at bottom layer and RRAM devices in the middle layer
at each cross-point. For a m x n RRAM crossbar, assume the
input signal of 4, row is V; and the conductance of RRAM
device on i, row jg, column is Gy, then the output current
flowing down jy, column I; = X7, V/G,;. In other words,

TABLE 11
COMPATIBILITY OF DIFFERENT SAMPLING MATRICES
ON VARIOUS HARDWARE PLATFORMS

Hardware MAC/MEM RRAM crossbar MAC/PRNG
NuMax v X X
this work v v X
Reed-Muller v v X
Bernoulli v v v
Gaussian v X v

crossbar structure intrinsically supports in-memory embedding
operation

Vol Gi1 Gia Gin VI1

V(% Ga1 Gaa Goyp, V7
=2 . ) ) . (3)

Vom Gml Gm2 Gmn V}n

where Z is the transimpedance of the transimpedance amplifier
(TIA) and V7, the output voltage of i, column. It must be
ensured that input ||V;|| < Vi, to avoid accidental value
changes of G, in which the V}, is the device programming
threshold voltage.

The mapping of embedding matrix is accomplished by the
resistance programming of RRAM crossbar according to V.
Intended for memory usage, RRAM devices are commonly
bistable with on-resistance and off-resistance ratio as high as
103 ~ 10* [15], [19]. Resistance programming with higher
resolution has been demonstrated in 4 or 5 levels at most
[19], [20]. Therefore, resistance programming in continuous
(or close-continuous) value resolution is practically challenging
due to large process variation under current manufacture tech-
nology. In other words, the real-valued sampling matrix does
not comply with RRAM crossbar and Boolean sampling matrix
is preferred.

As the RRAM crossbar is essentially (0,1) binary in terms of
conductance, the mapping of (0,1) Boolean matrix follows: 0
corresponds to high resistance state (HRS) and 1 maps to low
resistance state (LRS). To map ¥ € {=1,1}™", simple linear
transformation needs to be considered: Yo = (20 — J)x =
20x — Jx, where © € {0,1}"™*", J all-ones matrix and x
input vector. The Jx is implemented by an additional all-LRS
column that generates >x as current offset for other columns,
as shown in Fig. 5. The sampling matrices that each type of
hardware supports are illustrated in Table II.

C. Problem Formulation

For an sampling matrix ¥ that satisfies RIP with distortion
of &y, the following equation will also hold true:

(1= dw)ll2ll3 < ITWz|3 < 1+ dw)3 Q)

if T is an orthonormal rotation matrix. In other words, if we
can find an orthonormal rotation matrix that transforms real-
valued NuMax embedding matrix ¥ into a matrix that is close
enough to a Boolean matrix \i/, then the Boolean embedding
of ¥ can preserve original distortion dy. In other words, the
resulting W s still optimized towards the same training dataset
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as NuMax embedding ¥, and meanwhile it can be efficiently
mapped to circuits in Figs. 4(c) and 5 with greatly reduced
power consumption.

The Boolean sampling matrix optimization can be then for-
mulated as the following optimization problem:

minimize || T — ¥||%
T,V

)

subjectto 7T . T =1
e {-1,1}m™n ©)

where U € R™*™ (m < n) is the optimized real-valued sam-
pling matrix learned from dataset, that projects data from high
n-dimension to low m-dimension; T € R™*™ is an orthonor-
mal rotation matrix that attempts to transform ¥ to a Boolean
matrix. ¥ € R™™ is the closest Boolean matrix solution
where closeness is defined by the Frobenius norm.

Ideally, if an orthonormal transformation matrix 7" can rotate
U to an exact Boolean matrix, i.e., the optimal value of (5) is
zero, then the distortion § of optimized Boolean embedding will
be exactly the same as the NuMax real-valued embedding. In
practice, with a non-zero optimal value, the closeness of T'W to
U indicates information loss degree from ¥ to 0. Alternatively,
it can be interpreted as an equivalent near-orthogonal rotation
T’ transforming the real-valued ¥ to an exact Boolean 0. The
degree of orthogonality implies the information loss of W.

IV. ITERATIVE HEURISTIC ALGORITHM

It is intractable to solve the problem formulated in (5) con-
sidering the orthogonal constraint 77 - 7' = I and the integer
constraint ¥ € {—1, 1} simultaneously, as both constraints are
non-convex. When one constraint is considered at one time, (5)
can be split into two manageable problems: if the orthogonal
constraint is considered for 71", and U a given Boolean matrix,
the problem becomes the search of an orthogonal rotation ma-
trix for maximal matrix agreement; if the integer constraint is
considered for ¥, and T a given orthogonal matrix, the problem
turns to a Boolean quantization problem. In this section, a
heuristic approach is proposed that iteratively solves orthog-
onal rotation problem and Boolean quantization problem, and
gradually approximates the optimal solution of ¥ in each round.

A. Orthogonal Rotation

The problem of finding an orthogonal transformation matrix
T that can rotate a given real-valued projection matrix ¥ to
another given Boolean matrix ¥ can be formulated as

minimize |[kT¥ — |2
T,k
subject to 7. 7=1. (6)
The cost function can be represented by trace function as

|[kTU — 0|2 = E2Te(0T0) + Tr(OT W) — 2kTe(TT 0w 7).
(7

259

As U and ¥ are given matrices, Tr(U7 W) and Tr(¥7 ) are
therefore two constants. Consider &k as constant first, the formu-
lated optimization problem in (6) can be rewritten as

maxiTmize Tr(TTowT)
subjectto 77 .-T =1 (8)

and with the singular value decomposition T = uxyT
where ¥ = diag(o1,...,04,), the cost function of (8) can be
rewritten as

Te(TTeT) =Te(TTUSVT)
n
=Tr(VITTUS) <) o )
i=1
The inequality holds as V, T, and U are all orthonormal

matrices. As such, the trace is maximized when VI TTU = I,
which leads to

T=UVT, (10

To optimize k, let 9 f /Ok = 0 in which f is the cost function of
(7), and the best scaling factor can be obtained by
Tr(TTouT
_ (@ weT) (11
Tr(TT )

B. Quantization

T is a known orthogonal transformation matrix, and ¥ is a
given real-valued optimized projection matrix, the problem to
find its closest Boolean matrix can be formulated as

minimize ||ET¥ — ¥||%
¥

subjectto W e {—1,1}. (12)
It is obvious that the solution for (12) is
. 1 kKT®);: >0
V=< (KT0)s; 2 (13)
-1, (kJT\I/)ij <0

This can be seen as Boolean quantization. The quantization
error can be defined as
e=|[kTV — |2 (14)
In ideal case, the error would be zero which means an or-
thogonal transformation 7" on optimized real-valued projection
matrix ¥ finds an exact Boolean matrix V. Therefore, the
distortion ¢4, caused by U will be the same as dy. With e #£0,it
can be inferred that 5@ > dy. To reduce the quantization error,
it is an intrinsic idea to increase the level of quantization.
Consider a modified problem formulation

1, (kTV)y; >1/2
Uy =40, —1/2<(kT0);; <1/2
-1, (kTV);; < —1/2

15)
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with each element of the matrix ¥ normalized within the
interval of [—1, 1]. It is important to keep matrix Boolean
so that it can be mapped to RRAM crossbar structure effi-
ciently, thus it requires that the matrix ¥ can be split into two
Boolean matrices U = (1/2)(¥! + ¥2) where ¥ € {—1,0,1}
and W', U2 € {—1,1}. With Boolean quantization, only one
projection RRAM crossbar is needed. Two RRAM crossbars
are needed for the three-level quantization case, as a result of
trade-off between error and hardware complexity.

C. Overall Optimization Algorithm

The heuristic optimization process is summarized in
Algorithm 1. Given some initial guess of U, the inner loop
of Algorithm 1 tries to find the local close-optimal solution
by improving 0 through iterations. Within each iteration, (6)
and (12) are solved by singular vector decomposition and
quantization as concluded in (10) and (15), respectively. The
iterations terminate when the ¥ stops improving and converges.

Algorithm 1: Iterative heuristic Boolean sampling matrix
optimization algorithm

input : real-valued embedding matrix W, search width,
and quantization level

output: optimized Boolean embedding matrix \ilopt

initialize \i'opt < random m x n Bernoulli matrix;

while not reach search width limit do

seed < random m X m matrix;

U, S, V < SVD of seed;

T « U;

while not converged do

U« quantization of 7'W;

U, S,V < SVD of U 07,

T «+ UV;

10 k Tr (TT O 0T)/ Tr (BT W),

1 if ||KT0 — U ||2 < |[kopt Topt T — Wopt |2 then

2 | B

o 7 I N I S

As both integer constraint and orthogonal constraint are non-
convex, the local optimum in most cases is not optimal globally.
In other words, the solution strongly depends on the initial
guess that leads to the local close-optimum. Therefore, the outer
loop of Algorithm 1 increases the search width by generating
numerous initial guesses that are scattered within orthogonal
matrices space. For each initial guess it will gradually converge
to a local optimum, thus the increase of search width will
compare numerous local optimal solutions and approximate the
global optimum.

V. ROwW GENERATION ALGORITHM

The formulated problem in (5) is a mixed-integer non-
linear programming (MINLP) problem, as it has both nonlinear
orthogonal constraint 77 - T = I and the integer constraint
¥ € {—1,1}™*"_ Although such mixed-integer non-linear pro-
gramming (MINLP) problem can be solved by existing algo-
rithms such as genetic algorithm [21], it lacks efficiency and

only problem in small size can be managed. For the embedding
matrix in compressive sensing, the transformation matrix 7'
could have dozens of rows while matrix ¥ may have thousands
of Boolean variables, so current solvers may fail in such scale.
In this section, we proposed a row generation algorithm that
also can efficiently tackle the problem.

A. Elimination of Norm Equality Constraint

The orthonormality of T in (5) implies two specific con-
straints, the orthogonality of rows of 7' that

t] t; =0 Vi, jthati#j (16)

and the norm equality that

il =1 Vi (17)

where ¢; is the ¢4, row of T". Both imply numerous quadratic
equality constraints (non-convex) and therefore hard to manage
simultaneously. The non-convex quadratic norm equality con-
straint of rows of 7" indicates the normalization of rows after
orthogonality is satisfied. In the following, we show how the
norm equality constraint can be eliminated without affecting
the solution accuracy of problem in (5).

Assume we only impose orthogonal constraint on 7" rather
than more strict orthonormal constraint, the original problem
can be then relaxed to

minimize || T — ¥||%
T,

s

subjectto 77 .T = D?

e {-1,1}m" (18)
where D = diag(di,ds,...,d,) is a diagonal matrix, and d;
is the norm of 4;;, row of T'. That is to say, an additional row
scaling operation is introduced during the sensing stage
y =D 'Oz (19)
where W & T'U is the optimized Boolean embedding matrix
that can be efficiently realized in hardware, ) is the ortho-
normal sparse basis of original signal, and z is the sparse
coefficients.
In fact, the row scaling operation during signal acquisition
is unnecessary and can be transferred to recovery stage if an
implicit sensing is performed

7 =vQx (20)
with corresponding signal reconstruction by
minimize ||z
TeRN
subjectto |D7'j — DTITUQx| < e 21

where ¢ is the tolerance for noise on sampled signal data
9. As such, the norm equality constraint is eliminated while
the compressive sensing signal acquisition front-end hardware
complexity stays the same and recovery quality is not affected.
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B. Convex Relaxation of Orthogonal Constraint

To construct a transformation matrix 7" with orthogonal rows
and minimize the cost function at the same time is challenging.
In the following, we propose a convex row generation algorithm
that seeks local optimal solution. The idea is to construct each
row of T" at one time while minimize the cost function. Assume
t1,ta,...,t;—1 are first ¢ — 1 rows that are already built with
orthogonality, to construct the ;5 row ¢;

.
minimize ||t; U — ;]|

ti i
tq
to
subject to . . tiT =0
ti1
Ui € {—1,1}™ (22)

In other words, each time to construct a new row t;, it
has to be orthogonal with previously built ¢4, ¢, ...,t;—1. The
iterative row generation algorithm is shown in Algorithm 2.
From the geometric perspective, Algorithm 2 seeks to find
an orthogonal basis in the m-dimensional space iteratively.
Initially 7" is empty so the first direction vector has the greatest
freedom to minimize the cost function. After the first basis vec-
tor is chosen, the algorithm finds the best basis vector in the left
(m-1)-dimensional subspace that best minimizes the target
function. This is iteratively performed until the last direction
is selected in only 1-dimensional subspace with freedom for
length only.

As T is a square matrix, there always exists a solution
for Algorithm 2. The MINLP problem with m x n integer
variables in (18) is therefore relaxed to m MINLP sub-problems
each with only n integer variables.

Algorithm 2: Iterative row generation algorithm

input : real-valued embedding matrix ¥
output: orthogonal transformation matrix 7, optimized
Boolean embedding matrix 0
1 initialize 7 = 0, ¥ = (;
2 for ¢ <+ 1 to m do
3 get t; by solving problem in Eq. 22 ;

4 update 7 = {Z] U= L}f/]

C. Overall Optimization Algorithm

The overall algorithm to solve (18)isillustrated in Algorithm 2.
The 0-1 programming problem in (22) within the loop can be
readily solved by branch-and-cut method, under the condition
that the number of Boolean variable is kept small. The branch-
and-cut method is widely implemented in solvers such as
MOSEK [22] and BARON [23].

Without the linearization by row generation, the branch-and-
cut method cannot be applied as the orthogonal constraint is
strongly nonlinear thus evaluation of lower and upper bounds

for each sub-problem will be extremely complicated. In addi-
tion, the linearization by row generation significantly reduces
the number of Boolean variables thus reduces the worst-case
complexity from 2™*™ to m - 2". As such, the row generation
together with widely available integer programming solvers can
find solution for problem formulated in (18).

VI. NUMERICAL RESULTS
A. Experiment Setup

In this part, we evaluate different compressive sensing sam-
pling matrices from both software and hardware perspectives.
The numerical experiments are performed within Matlab on a
desktop with 3.6 GHz Intel i7 processor and 16 GB memory.
The software performance of sampling matrices is mainly char-
acterized by the signal recovery quality of sampling matrices.
For this purpose, both LFW image data [24] and biomedical
ECG data [25] are used. For both types of data, the NuMax
[12] optimization is first applied with varied training parameter
0 values (][0.05,0.1,...,0.35]), NuMax produces optimized
real-valued sampling matrices with different ranks. As de-
picted in the flow chart in Fig. 2, the proposed algorithms are
then applied to Booleanize NuMax sampling matrices. Apart
from above data-driven sampling matrices, random Gaussian,
Bernoulli, and Reed-Muller [10], [11] (non-data-driven op-
timization) sampling are also compared. The reconstructed
signal-to-noise ratio (RSNR) is used as signal recovery quality
metric, which is defined as

RSNR = 20 log,, <ﬂ> (23)

|z — 22

where x is the original signal and % is the reconstructed signal.
With respect to hardware cost consideration, above all sam-
pling matrices can be mapped to three different sampling
hardware configurations. Specifically, the MAC/SRAM, MAC/
PRNG and RRAM crossbar configurations with their variations
are evaluated to examine the hardware friendliness of all the
sampling schemes. For real-valued MAC, 16-bit resolution is
used as we find that resolution higher than 16-bit will not
improve accuracy, as shown in Fig. 1. For RRAM crossbar,
the resistance of 1 K2 and 1 MQQ are used for RRAM on-state
resistance and off-state resistance according to [19]. The area
of the RRAM crossbar is evaluated by multiplying the cell area
(4F?) with sampling matrix size plus one additional column to
calculate current offset as discussed in Section III-B. Dynamic
power of the RRAM crossbar is evaluated statistically under
1000 random input patterns following an uniform distribution
with voltage ranging from —0.5 V to 0.5 V (V] < |Viet| =
0.8 V and |V| < |Vieset| = 0.6 V [19]) and the duration of
operation is 5 ns [19]. Both the real-valued and Boolean digital
CMOS matrix multiplier designs are implemented in Verilog
and synthesized with GlobalFoundries 65 nm low power PDK.
A pseudo-random number generator design [7] is also im-
plemented and synthesized. The SRAM that stores sampling
matrix is evaluated by CACTI [26] memory modeling tool with
the setting of 65 nm low standby power fabrication process.
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Fig. 6. The algorithm efficiency for (a) local search convergence and (b) global
search convergence.

Table II shows all valid combinations of sampling matrix and
hardware configuration that will be compared in the section.
Among all the combinations, we will show in this section that
our proposed sampling matrix can achieve both best signal
recovery quality and hardware efficiency.

B. Iterative Heuristic Algorithm on High-D ECG Signals

For training stage (NuMax), 1,000 ECG periods in dimension
of 256 are randomly picked from database [25] as the dataset x;,
which leads to around 1 million of pairwise distance vectors
in set S(). For testing phase, another 1,000 ECG periods are
selected as dataset x’, which have no overlap with learning
dataset x. The ECG signal reconstruction is performed on
unseen data set ' by solving (1) with Battle-Lemarie wavelet
bases used.

a) Algorithm convergence and effectiveness: The effi-
ciency of Algorithm 1 can be examined from two aspects,
finding both local and global optima. The efficiency of finding
local optimum is assessed by convergence rate. The local search
terminates when the approximation error ||T'¥ — W||% stops
improving.

Given specific RIP upper-bounds, NuMax [12] provides ¥
with different ranks. With RIP constraint of 0.1, the NuMax
produces a U € R'9*256 sampling matrix. Algorithm 1 is ap-
plied to ¥ with total 10000 repeated local search and the
convergence is illustrated in Fig. 6(a). It can be observed that
the relative error reduces dramatically within the first few itera-
tions. The zoomed sub-figure shows that local search on av-
erage converges within 50 iterations, where convergence is
defined as less than le-6 error reduction in two consecutive
iterations. Generally, the local optimum can be considered
found in less than 100 iterations.

The global search is achieved by scattering many initial
guesses in the orthogonal matrices space for 7', and comparing
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Fig. 7. The recovery quality comparison among different sampling matrices.
(a) Examples of recovered ECG signals at v = 19/256 and (b) RSNR for
1000 ECG periods.

the corresponding local optima. The errors under varying num-
ber of initial guesses are shown in Fig. 6(b). Considering the
Boolean constraint and the orthogonal constraint, the problem
formulated in (5) is generally NP-hard. Therefore, the relative
error can be improved by scattering exponentially more initial
guesses, yet no convergence is observed. Hence an efficient
search policy should be designed in a way scattering as many
initial points as possible and limiting the local search for each
initial guess within 100 iterations.

b) ECG recovery quality comparison: The ECG signal
recovery examples at the undersampling ratio vy = 19/256 are
shown in Fig. 7. For non-data-driven sampling matrices, both
the random Bernoulli and Gaussian show similar reconstruc-
tion quality. In other words, the increase of bits in random
numbers will not improve recovery quality. This is because, the
increase of bits of random number will not gain any additional
information.

The pseudo-random number generator (PRNG) based
Bernoulli exhibits the lowest reconstructed signal quality. This
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is because, as PRNG produces 0/1 sequences with a predeter-
mined pattern, it has self-coherence issue. For example, a 8-bit
per cycle PRNG have a period of 256 (2%), and when filling a
sampling matrix by rows with such 0/1 sequences, all rows of
the matrix will be identical.

The Reed-Muller code optimizes the sampling matrix by
minimizing the correlations among different rows/columns,
which helps to improve sampling performance. Being a generic
sampling matrix that works with all data types, it cannot exploit
the isometric property of ECG signal, which limits its perfor-
mance in particular applications. Specifically, it only shows
1 dB improvement compared to random Bernoulli sampling.

The data-driven NuMax real-valued sampling exhibits the
best recovery quality (highest RSNR) as shown in Fig. 7(b). The
proposed iterative heuristic (IH) algorithm quantizes the real-
valued NuMax sampling with slight quality loss. Specifically,
at the undersampling ratio v = 19/256, the IH (Iv2) exhibits
8 dB, 9 dB, and 10 dB higher RSNR than that of Reed-Muller,
Bernoulli, and pseudoBernoulli samplings, respectively. Also,
the level-3 quantization through (15) can preserve more in-
formation than level-2 quantization through (13). The RSNR
of ITH (Iv3) shows marginal 0.48 dB higher RSNR than IH
(Iv2). The TH (Iv3) sampling matrix ¥ € {—1,0,1}™*" will
incur additional hardware overhead compared to IH (Iv2) ¥ €
{_1’ 1}m><n

Fig. 7(a) gives a visual effect of quality of recovered ECG
signal segments with different sampling matrices. The data-
driven sampling matrices, i.e., NuMax, IH (I1v2), and IH (1v3),
can recover signals that tightly coincide with original signals.

C. Row Generation Algorithm on Low-D Image Patches

For training stage (NuMax), 6,000 patches with size of 8 x 8
are randomly picked throughout all images as the dataset Y,
which leads to around 18 millions of pairwise distance vectors
in set S(x). For testing phase, another 6,000 patches with size
of 8 x 8 are selected as dataset x’ with no overlap with learning
dataset x. The image reconstruction is performed on unseen
data set ' by solving (1) with 2D DCT bases.

The genetic algorithm [21] is adopted as the baseline solver
for the mixed-integer nonlinear programming (MINLP) in (5),
which is compared with the proposed algorithm in Algorithm 2.
Both algorithms are run given same amount of time, i.e.,
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m x 500 seconds where m is the rank of U that indicates the
size of the problem.

a) Algorithm effectiveness: The idea behind the pro-
posed real-valued matrix Booleanization is to preserve the RIP
of NuMax sampling matrix, which differs from the truncation
based quantization. The information loss during the quantiza-
tion is directly related to the RIP preservation. The algorithm
effectiveness in this part will be examined by the isometric
distortion ¢, defined in (2).

The distortions of the all embeddings are tested on unseen
dataset x’. The isometric distortions of both random embed-
dings are almost invariant. Being optimized on image dataset
X, both the NuMax and proposed (quantized NuMax) are
significantly better than random embeddings. With focus on
the Boolean sampling matrices that are hardware friendly, the
isometric distortion of optimized Boolean embedding is 3.0x
better than random Boolean embedding on average.

Due to the near-orthogonal rotation, the optimized Boolean
embedding experiences some penalty on isometric distortion &
compared to NuMax approach. For genetic algorithm, as it ex-
periences higher distortion than that of the proposed algorithm,
it can be inferred that Algorithm 2 can find a more precise so-
lution. In addition, it can be observed that the genetic algorithm
fails when undersampling ratio m/n increases, and this is be-
cause the proposed row generation based algorithm requires lin-
early more time when the number of row m increases, while the
genetic algorithm needs exponentially more time. Moreover,
the solution provided by genetic algorithm is stochastic, which
has no guarantee on its effectiveness while the proposed algo-
rithm is deterministic.

b) Image recovery quality comparison: The recovery
examples under v = 25/64 are shown in Fig. 9(a). The recon-
structed images in blue box correspond to Boolean embeddings
that have low power hardware implementations, and images in
red box are from optimization based approaches which show
lower recovery errors. The genetic algorithm is also optimiza-
tion based, but the effectiveness is inconsiderable. Therefore,
only the proposed can achieve both low power and high recov-
ery performance. The numerical image reconstruction quality
is shown in Fig. 9(b). The two random embeddings show
similar reconstruction RSNR, which is averagely 8.3 dB lower
than that of the proposed optimized Boolean sampling matrix.
The RSNR of optimized Boolean embedding is close to that
of NuMax embedding, which is 2.5 dB lower as a result of
information loss by near-orthogonal rotation.

On the other hand, the genetic algorithm shows no obvious
effectiveness of improving recovery quality even though it
optimizes a Boolean embedding matrix. The main reason is that
during the conversion from ¥ to U too much information loss
leads W to be close to a random Boolean matrix. In other words,
the genetic algorithm is ineffective to solve the problem in (5).
In addition, the stochastic nature of genetic algorithm makes it
necessary to perform the algorithm considerably many times.
The proposed algorithm, on the contrary, guarantees to produce
a Boolean matrix with high performance with single execution.

The proposed iterative heuristic algorithm is also compared
with the row generation (RG) algorithm. The signal recovery
quality of RG algorithm outperforms heuristic algorithm by
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Fig. 9. The recovery quality comparison among different embedding matrices.
(a) Examples of recovered images under v=25/64 and (b) RSNR on 6000
8 x 8 image patches.

2.1 dB on average. Though RG algorithm is more effective, it
involves binary programming (22), and is unscalable to applica-
tions with high-dimensional signal. To conclude, heuristic algo-
rithm is efficient for applications of both low/high-dimensional
signals, and RG algorithm provides the best performance for
low-dimension signal applications.

D. Hardware Performance Evaluation

In this part, the hardware performance benefits of Boolean
embedding will be investigated in details. The evaluation only
focuses on the embedding hardware as indicated by red dash-
lined boxes in Figs. 3 and 5.

a) Hardware comparison: The matrix-vector multiplier
is composed of multiple multiplier-accumulator (MAC) in par-
allel. To multiply the signal vector with a 19 x 256 sampling
matrix, 19 MACs are needed and each MAC requires 256 cycles
to perform the inner-product with each cycle (1 ns). To store the
NuMax real-valued sampling matrix, 16 kB SRAM with 64-bit
I/O bus-width is used.

The proposed Boolean optimization quantizes NuMax sam-
pling matrix into a {—1,1}™*™ Boolean matrix. The size of
SRAM to store sampling matrix is therefore reduced from
16 kB to 1 kB. Compared to a Bernoulli {0, 1}"*"™ matrix, a
{—1,1}™*™ multiplication requires calculations of 2’s comple-
ment of input signal vector, which incurs additional hardware
cost for MACs. To minimize the overhead of 2’s complement,

TABLE III
HARDWARE PERFORMANCE COMPARISON AMONG DIFFERENT
SAMPLING MATRICES (19 X 256) ON VARIED
HARDWARE CONFIGURATIONS

Matrix Hardware Energy Leakage Area Cvele
type configuration (nJ) power (uW) | (um?) 4
MAC (16-bit) 116.38 119.63 127984
Real-valued | yipnt (16kB) | 8.08 4.6 31550 | 20
MAC (1-bit) 24.81 69.22 73207
-1/1 Boolean | \renr (11B) 2.43 0.29 9800 256
. MAC (1-bit) 21.87 30.40 29165 T
O/1 Bernoulli PRNG 8.26e-2 0.04 R | ™2
Boolean RRAM crossbar 1.06 - 173 1

fPseudo-random number generator (PRNG) used produces 10 bits per cycle.

the MAC design in Fig. 4(c) is used, which calculates 2’s
complement only once every 256 cycles.

RRAM crossbar supports both {0,1}™*™ and {—1, 1}™*™
Boolean matrices. As the sampling matrix is embedded into the
RRAM crossbar which also performs the matrix multiplication,
no separate memory is required.

The performance of four hardware schemes that support
different types of sampling matrices is compared in Table IIL.
Compared to the NuMax real-valued embedding on 16-bit
MAC and 16 kB SRAM hardware, the proposed quantized
—1/1 Boolean embedding on 1-bit MAC and 1 kB SRAM
consumes 4.6x less operation energy per embedding, 1.8x
smaller leakage power, and 1.9x smaller area. This is because,
as mentioned in Section I1I, the real-valued multiplier generally
requires quadratically increasing number of full-adders when
resolution increases, while Boolean multiplier only needs lin-
early more full-adders.

When the proposed quantized —1/1 Boolean embedding is
performed on RRAM crossbar, it further improves the hard-
ware performance significantly. Specifically, for the operation
energy per embedding, the RRAM crossbar based embedding
outperforms the CMOS circuit based real-valued embedding by
117x. The area of the RRAM crossbar based embedding is
nearly 1000x better than that of CMOS circuit based real-
valued embedding. In addition, the RRAM crossbar will not
experience the leakage power which is at the scale of hundreds
of uW for the CMOS circuit based approach. For the operation
speed, the RRAM crossbar embedding executes in single cycle
while the CMOS circuit requires 256 cycles due to the reuse of
hardware. The overall performance for different sampling ma-
trices on varied hardware platforms is summarized in Table I'V.

b) Impact of RRAM variation: One non-negligible issue
of mapping Boolean embedding matrix to RRAM crossbar is
the RRAM RHS and LHS variations. With high resistance
variation, the embedding matrix will deviate from expected
values to be represented by RRAM resistance, and hence the
recovery quality may degrade. The sensitivity study of recovery
quality on the resistance variations of RRAM is shown in
Fig. 10. The resistance of RRAM is assumed to follow log-
normal distribution with the mean to be Ry rs and Rygrs, and
standard deviation or,rs and ogrs for LRS and HRS cells
respectively.

With varied o1,rs and oprs, it can be observed from Fig. 10
that the performance degradation is more susceptible to resis-
tance variation of LRS, while less sensitive on variation of RHS.
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TABLE 1V
COMPARISON OF ALL VALID SAMPLING MATRIX AND HARDWARE COMBINATIONS
Platform Y . Data Construction Recovery Energy
Sampling matrix Sampling hardware Boolean? | Optimized? driven? Stage Effort quality* | consumed*

Gaussian MAC(16-bit) + MEM(16kB) X X X off-line | Immediate 1.12 117.4
Bernoulli MAC(1-bit) + MEM(1kB) v X X off-line | Immediate 1.09 229
Bernoulli RRAM crossbar v X X off-line | Immediate 1.09 1.0
Pseudo-Bernoulli MAC(1-bit) + PRNG v X X runtime - 1.00 20.7
NuMax [12] MAC(16-bit) + MEM(16kB) X v v off-line ~100s 3.86 117.4
Reed-Muller [11][10] MAC(1-bit) + MEM(1kB) v v X off-line Fast 1.25 229
Reed-Muller [11][10] RRAM crossbar v v X off-line Fast 1.25 229
Proposed’ MAC(1-bit) + MEM(1kB) v v v off-line ~100s 3.18 25.7
Proposed RRAM crossbar v v v off-line ~100s 3.18 1.0

¥ the recovery quality depicts the quality performance ratio of all sampling matrices over baseline pseudo-Bernoulli. The RSNR dB for ECG
is converted to mean-squared error. Numbers in bold are ones with good performance.
*the energy consumption is shown as ratio of used energy of all sampling matrices over that of RRAM crossbar. Numbers in bold are ones

with good performance.

fthe proposed denotes the Booleanized NuMax sampling matrix by proposed Algorithms.
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Fig. 10. The sensitivity of recovery quality of (a) image signal and (b) ECG
signal on the resistance standard deviation o of RRAM for both low resistance
state (LRS) and high resistance state (HRS) following Log-normal distribution.

In practice, the RHS variation opyrg is approximately 0.3 [27],
and LHS variation oprg roughly 0.1 [27]. The real-world o
is annotated in Fig. 10 and it can be concluded that the pro-
posed Boolean embedding on RRAM crossbar is robust against
RRAM device variations when on/off ratio is high (GrLrs >
Gurs ~ 0). To further suppress the performance degradation,
material engineering [28] and verification programming method
[27] can help achieve higher LHS uniformity.

VII. CONCLUSION

In this work, towards energy efficient and high performance
hardware implementation of data acquisition by compressive
sensing, a novel embedding algorithm is proposed to transform
a given optimized real-valued embedding matrix into an op-
timized Boolean embedding matrix under (near-) orthogonal

rotations. As such, the embedding not only can be effectively
mapped to both CMOS circuit and RRAM crossbar with much
lower power consumption, also high performance of optimized
real-valued embedding can be well preserved. Numerical re-
sults show that, in terms of signal acquisition quality, the
proposed data-driven optimized Boolean sampling matrix out-
performs the random Bernoulli matrix by 2.9 and 3.2x with
RRAM crossbar and CMOS MAC circuits with similar energy
efficiency, respectively. Compared to real-valued data-driven
sampling matrix, the proposed Boolean sampling can achieve
117x and 4.6 better energy efficiency on RRAM crossbar
and CMOS MAC implementations with similar signal quality,
respectively. Overall, the proposed data-driven Boolean sam-
pling matrix combines both the high performance advantage
of real-valued sampling and low power advantage of Boolean
sampling.
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