
ISCAS 2019 Tutorial

Baoxin Li & Fengbo Ren
Computer Science & Engineering

Machine & Deep Learning for Edge-Cloud
Computing Systems

1

Module 3:
Enabling Deep Learning for Edge Computing

2

• The Era of IoT & Edge Computing

• FPGAs for Edge Computing

• The Edge Deployment Challenge of Deep Learning

• Techniques for Reducing Computational Complexity of Deep
Neural Networks (DNNs)

3

The Era of IoT & Edge Computing

Today’s Internet is Internet-of-things (IoT)

4

Connected Human Users Connected Things

4.17 Billion by 2020 50.1 Billion by 2020

12x more things than human users

Data Explosion in The IoT Era

5

By 2020, IoT will create 600 Zetta Bytes of data per year

"Cisco global cloud index: Forecast and methodology 2015–2020." White paper (2016).

How Big is 600 ZB of Data?

6

… …
600 Zetta ants in a row

=

… …

12 Million solar systems in a row

380,521 light years

Cloud Data Center IP Traffic Growth

7

Cloud-User IP Traffic Bandwidth by 2020: 14.1 ZB / yr.

"Cisco global cloud index: Forecast and methodology 2015–2020." White paper (2016).

2 ZB / yr. (14%) is for data center to end users

Global Data Center Storage Capacity Growth

8

Global Data Center Storage Capacity by 2020: 1.8 ZB

"Cisco global cloud index: Forecast and methodology 2015–2020." White paper (2016).

1.62 ZB (88%) is for Cloud Data Centers

By 2020, Cloud Will Fall Short by 2 Orders of
Magnitude in Handling IoT Data

9"Cisco global cloud index: Forecast and methodology 2015–2020." White paper (2016).

600 ZB 2 ZB 1.62 ZB
IoT data

generated /yr.

End-user-to-
cloud IP traffic
bandwidth / yr.

Cloud data center
storage capacity

Edge computing is needed to bridge this gap!

Edge Computing: Distributed Computing Paradigm,
Brings Computation & Storage Closer to Data Source

10

Edge computing could happen

near wireless gateways
(wifi, 5G, etc.)

near LAN
switches/routers

near IoT sensors

Cloud

Edge

IoT Devices

Edge Computing Benefits

11

Cloud

Edge

IoT
Devices

• Faster response time
• Reliable operations even with limited connectivity
• Security and compliance
• Cost-effective compared to on-sensor/embedded computing
• Interoperability between legacy machines and modern IoT

platforms

Multi-tenancy

Cloud and Edge Workloads Have Distinct
Characteristics

12

Cloud Edge
Main User Human Users IoT Devices

Time/latency-
sensitive? Usually Not Usually Yes

Cluster Mode Centralized Geographically Distributed
Data Movement

Pattern Batches of Static Data Streams of Dynamic Data

Data Access
Interface Deep Memory Hierarchy Input/output (I/O) Channels

• Edge deals with frequent/periodic service requests from IoT devices
• Edge handles time-sensitive workloads in geographically distributed

fashion
• Edge applications process streaming data from I/Os

Existing Solution (Cloudlets) Are Insufficient

13

• Optimized for batch
processing of memory data

• Limited performance for
processing streaming data
from I/Os

• Only exploit spatial
parallelism but not the
temporal (pipeline)
parallelism needed for
streaming processing

• Power-hungry, low energy
efficiency

Cloudlet
TDP: >180W

9”
9”

4”

CPU
Co-proc

GPUPC
Ie

CPU/GPU Architecture

14

FPGAs for Edge Computing

What is an FPGA?

15

Precise, Low Jitter Clocking
MMCMs

Logic Fabric
LUT‐6 CLB

DSP Engines
DSP48E1 Slices

On‐Chip Memory
36Kbit/18Kbit Block RAM

Enhanced Connectivity
PCIe® Interface Blocks

Hi‐perf. Parallel I/O Connectivity
SelectIO™ Technology

Hi‐performance Serial I//O Connectivity
Transceiver Technology

Image courtesy of Xilinx Inc.

• An FPGA is a farm of configurable hardware resources whose
functionality and interconnection can be redefined at run-time by
programming the FPGA configuration memory.

• A state-of-the-art FPGA carries an enormous amount of fine-grained
logic, computation, memory, and I/O resources, as well as coarse-
grained functional blocks.

• Upon the configuration of these resources, an FPGA can implement any
custom hardware architecture to accelerate any algorithm, achieving
both performance and efficiency gains. Virtex®‐7 FPGA

FPGAs Are Inherently Efficient for Processing
Streaming Data from I/Os

16

• With abundant register, memory, and configurable I/O resources, a
streaming architecture can be implemented on an FPGA to process
data streams directly from I/Os in a pipelined fashion

• The pipeline registers allow efficient data movement among
processing elements without involving memory access, resulting in
significantly improved throughput and reduced latency

I/O
s

Pi
pe

lin
e

R
eg

is
te

rs

Pi
pe

lin
e

R
eg

is
te

rsO
ps

O
ps

O
ps

O
ps

O
ps

O
ps

O
ps

O
ps

B
uf

fe
rs

/F
IF

O
s

O
ps

O
ps

O
ps

O
ps Pi

pe
lin

e
R

eg
is

te
rs

I/O
s

FPGAs Have Architecture Adaptability—Can
Exploit Both Spatial and Temporal Parallelism

17

• FPGAs can adapt their architecture to best fit any algorithm
characteristics due to their hardware flexibility

• The ability to exploit both spatial and temporal (pipeline) parallelism
allows FPGAs to provide consistently high throughput for accelerating
both high-concurrency and high-dependency algorithms, keeping the
promise to efficiently serve a broader range of IoT/edge applications.

I/O
s

Pi
pe

lin
e

R
eg

is
te

rs

Pi
pe

lin
e

R
eg

is
te

rsO
ps

O
ps

O
ps

O
ps I/O

s

Spatial Parallelism Temporal (pipeline) Parallelism
I/O

s

Pi
pe

lin
e

R
eg

is
te

rs

Pi
pe

lin
e

R
eg

is
te

rsO
ps

O
ps

O
ps

O
ps

I/O
s

FPGAs Can Have Higher Energy Efficiency Than
CPUs (Up to 100sX) and GPUs (Up to 10sX)

18
• Means improved thermal stability and reduced cooling/energy costs, critical

to edge computing considering the limited form factor of edge devices.

FPGA CPU GPU Algorithm Application Field Paper Title
10 1 0.3 RNN NLP Accelerating Recurrent Neural Networks in Analytics Servers: Comparison of FPGA, CPU, GPU, and ASIC
80 1 16 NN Computer Vision Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC
2.7 N/A 1 CNN Computer Vision Embedded FPGA PlatformsOptimizing CNN-based Object Detection Algorithms on Embedded FPGA Platforms
4.9 N/A 1 CNN Computer Vision Embedded FPGA PlatformsOptimizing CNN-based Object Detection Algorithms on Embedded FPGA Platforms
197 1 14 LTSM NLP ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA
4.4 1 1.16 sparse matrix mul linear algebra A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication
21 1 11 CNN Computer Vision Energy-Efficient CNN Implementation on a Deeply Pipelined FPGA Cluster
4 N/A 1 CNN Computer Vision Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?

11.7 N/A 1 3D ultrasound computer
tomography Computer Vision Evaluation of performance and architectural efficiency of FPGAs and GPUs in the 40 and 28 nm generations for algorithms

in 3D ultrasound computer tomography
24 1 N/A CNN Computer Vision Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks
50 1 1.3 sparse matrix mul linear algebra A Scalable Sparse Matrix-Vector Multiplication Kernel for Energy-Efficient Sparse-Blas on FPGAs
74 1 15 CNN Computer Vision From High-Level Deep Neural Models to FPGAs

6 N/A 1 3D ultrasound computer
tomography Computer Vision Comparison of Processing Performance and Architectural Efficiency Metrics for FPGAs and GPUs in 3D Ultrasound

Computer Tomography
11.6 N/A 1 Smith-Waterman Genome sequencing FPGA Based OpenCL Acceleration of Genome Sequencing Software
5.18 1 4.6 linear algebra linear algebra Evaluating and Optimizing OpenCL Kernels for High Performance Computing with FPGAs
2.6 1 N/A Apache Spark Genome sequencing When Apache Spark Meets FPGAs: A Case Study for Next-Generation DNA Sequencing Acceleration

0.827 1 0.665 Genome sequencing Energy efficiency of sequence alignment tools—Software and hardware perspectives
18.1 1 6.2 AES Parallel AES Encryption Engines Many-Core Processor Arrays
270 1 N/A Smith-Waterman Genome sequencing CMOST: A System-Level FPGA Compilation Framework
220 1 N/A MPEG image processing CMOST: A System-Level FPGA Compilation Framework

287 1 9.2 Random
Number Generators A Comparison of CPUs, GPUs, FPGAs, and Massively Parallel Processor Arrays for Random Number Generation

4.6 N/A 1 optical flow Computer Vision A Comparison of FPGA and GPU for Real-Time Phase-Based Optical Flow, Stereo, and Local Image Features
3.7 1 2 option pricing finance Comparing Performance and Energy Efficiency of FPGAs and GPUs for High Productivity Computing
336 1 21 Quasi-Monte Carlo finance High-Performance Quasi-Monte Carlo Financial Simulation: FPGA vs. GPP vs. GPU
25 1 2.8 astronomical systemsA comparative study on ASIC, FPGAs, GPUs and general purpose processors in the O(N2) gravitational N-body simulation
6.8 N/A 1 FIR video processing Separable FIR Filtering in FPGA and GPU Implementations: Energy, Performance, and Accuracy Considerations

1.73 N/A 1 option pricing finance An Energy Efficient FPGA Accelerator for Monte Carlo Option Pricing with the Heston Model
1 N/A 2.4 option pricing finance Energy-Efficient FPGA Implementation for Binomial Option Pricing Using OpenCL

3.9 N/A 1 sparse matrix mul linear algebra Communication Optimization of Iterative Sparse MatrixVector Multiply on GPUs and FPGAs

Normalized Energy Efficiency

FPGAs Now Support High-Level Programming
Languages, C/C++/OpenCL/MATLAB and More

19

MATLAB HDL Coder

FPGAs Are Becoming Increasingly More
Accessible to Application Developers

20

• Intel FPGA SKD for OpenCL Provides
– An offline compiler that generates the kernel hardware with interface logic

and builds the kernel image needed for FPGA programming
– A software-based emulator for symbolic debugging and functional

verification
– A run-time environment (firmware, software, device driver) to control and

monitor the kernel deployment and execution, and transfer data between the
host and FPGA device

Image courtesy of Intel PSG.

Board Support Package (BSP): Turn An FPGA
Board into A PCIe Computing Card

21

• A BSP must be designed at the HDL level and mapped onto the
FPGA to interact with the OpenCL runtime, which contains

– A static region that contains validated glue logics connected by an on-chip
network that manages the board-level resources (DDR, Various I/Os, etc.) and
interfaces them with user-defined kernels

– A partial reconfigurable region that can be dynamically programmed to
implement any user-defined kernels at run time.

Image courtesy of Intel PSG.

FPGAs Have Now Become the 3rd General-
purpose Computing Device after CPU, GPU

22

• Some OpenCL-supported FPGA card vendors and off-the-shelf
products

Full Height PCIe Form Factors

Intel PAC D5005 Bittware 520

Reflex CES LP1150Nallatech 385AIntel PAC w/ Arria 10

Low-profile PCIe Form Factors

FPGAs Are Suitable for Edge Computing:
Performance Invariance to Algorithm Characteristics

23

• FPGAs’ architectural adaptiveness can guarantee a stably high
processing throughput for various edge workloads

S. Biookaghazadeh, M. Zhao, and F. Ren, "Are fpgas suitable for edge computing?." USENIX Workshop on Hot Topics in Edge
Computing 2018.

Concurrency = 16,384 Concurrency = 1,024

FPGAs Are Suitable for Edge Computing:
Good at Handling Cond. Dependency (if/else/case)

24

• FPGAs’ fine-grained logic can efficiently implement if/else/case
as customized logic pipelined with or controlling the data path

• Give edge applications more flexibility in handling different
conditions

S. Biookaghazadeh, M. Zhao, and F. Ren, "Are fpgas suitable for edge computing?." USENIX Workshop on Hot Topics in Edge
Computing 2018.

FPGAs Are Suitable for Edge Computing:
Performance Invariance to Data Batch Size

25

• Edge applications process dynamic data from I/Os that have very
small batch size

• FPGAs can exploit temporal parallelism to efficiently process I/O
data in a pipelined fashion, providing a consistent throughput even
at small batch sizes

S. Biookaghazadeh, M. Zhao, and F. Ren, "Are fpgas suitable for edge computing?." USENIX Workshop on Hot Topics in Edge
Computing 2018.

FPGAs Are Suitable for Edge Computing:
Consistently High Energy Efficiency

26S. Biookaghazadeh, M. Zhao, and F. Ren, "Are fpgas suitable for edge computing?." USENIX Workshop on Hot Topics in Edge
Computing 2018.

27

The Edge Deployment Challenge of Deep Learning

DNNs Have High Computational Complexity (CC)
DNN Training Rarely Considers HW Constraints

28

• AlexNet -> 0.7 GFLOPs
• ResNet-152 -> 11 GFLOPs
• RetinaNet -> 12 GFLOPs
• FasterRCNN -> 446 GFLOPs

DSP* DNN*

*input image size: 224*224

• 2D-DWT -> 0.1 MFLOPs
• 2D-DCT -> 0.2 MFLOPs
• FFT -> 3.9 MFLOPs

#	 	 ,	

	often ≫ 10

3~6 orders of magnitude more
computational complexity

, S is sparse

DNNs Have Large Model Size
Off-chip Memory-bounded Computation

29

Comparison of model size
Algorhthm Weights
2D-DWT 256 KB
2D-DCT 128 KB
AlexNet 233 MB
ResNet50 98 MB
RetinaNet 120 MB
FasterRCNN 5500 MB

DSP

Deep
learning

Comparison of CPU/FPGA/GPU cache/on-chip memory size
device Cache/on-chip memory

CPU Intel Xeon E5-2630 16.7 MB
FPGA Arria 10 GX 1150 65.7 MB
GPU NVIDIA Tesla T4 4 MB

High CC and Limited Sp.-temp. Utilization
Challenge for Multi-tenancy Edge Computing

30

Comparison of FLOPs

 Occupation Rate:
spatial utilization of cores

 Stall Rate:
Temporal utilization of cores

∗ ∗ ∗ 100%Algorhthm FLOPs
2D-DWT 0.1 M
2D-DCT 0.2 M
AlexNet 0.7 G
ResNet50 4 G
RetinaNet 12 G
FasterRCNN 446 G

DSP

Deep
learning

[1] Wang, Dong, Ke Xu, and Diankun Jiang. "PipeCNN: An OpenCL-based open-source FPGA accelerator for convolution neural
networks." 2017 International Conference on Field Programmable Technology (ICFPT). IEEE, 2017.
[2] https://developer.nvidia.com/deep-learning-performance-training-inference

* Rough estimation from literature

Comparison of spatial-temporal utilization of CPU/FPGA/GPU

Device
Peak

throughput
Spatial-temporal
utilization (s)*

CPU Intel Xeon E5-2630 0.3 TFLOPs 10% - 18%
FPGA Arria10 1.5 TFLOPs 63% - 83%
GPU Nvidia Tesla T4 14 TFLOPs 6% - 33%

[1]

[2]

= about 2 FPS for Faster
RCNN on 224*224 image
with batch size of 1
How about larger images?
How about multiple app.?

31

Techniques for Reducing Computational Complexity
of Deep Neural Networks (DNNs)

Techniques for Reducing Computational
Complexity of DNNs

32

• Reduce total FLOPs
– Pruning
– Computational transformation (CNN-specific)
– Simplified building blocks (CNN-specific)

• Reduce numerical precision
– Quantization
– Ternary/Binary Nets

Pruning Key Concept

33

• Many parameters in deep networks are unimportant or
unnecessary

• Identify and prune out non-critical (redundant) weights
and/or activations

• Expand the sparsity of the weight matrix will result in
– Smaller memory footprint since the parameters can be

stored in the compressed sparse row (CSR) or
compressed sparse column (CSC) format

– Reduced computational complexity

Pruning Can be Done at Different Levels of
Granularity

34

 Depending on the pattern and granularity, pruning and the remaining network
can be structured or non-structured

StructuredNon-structured

Cheng, Jian, et al. "Recent advances in efficient computation of deep convolutional neural networks." Frontiers of
Information Technology & Electronic Engineering 19.1 (2018): 64-77.

An
y

pa
r.

A
ve

ct
or

 in
 W

A
2D

 K
er

ne
l

A
fix

ed
 s

pa
rs

e
pa

tte
rn

A
3D

 k
er

ne
l

Pruning Approach

35

• Start with fully/partially trained network
• Analyze the criticality of a or a group of parameters to final

accuracy and prune.
– Calculate the approximate 2nd derivatives of the loss w.r.t. the

praters (non-structured) [B. Hassibi, et al., NIPS’93]
– Remove weight connections in small magnitude (non-structured),

combined with quantization and Huffman encoding [H. Song, et
al., ICLR’16]

– Select filter combination that minimizes the reconstruction errors
of the next layer’s feature map [J.-H. Luo, et al., ICCV’17]

– Introduce filter selection weight, find the optimal filter selection
weight vector that minimize the feature map errors [K. He, et al.,
ICCV’17]

– Use the scaling factor of the batch normalization layer to decide
filter importance [Z. Liu et al., ICCV’17]

• Fine-tune the remaining weights through training to
compensate for the accuracy drop

Non-structured Pruning Results

36

Dataset CNN arch. Top-1
accuracy/%

Top-5
accuracy/%

Accuracy
drop/%

Model
compression

FLOPs
reduction

[1] ImageNet AlexNet 57.23 0.01 9x 3x
[1] ImageNet VGG-16 68.66 0.16 13x 5x
[2] ImageNet AlexNet - 79.56 0.87 11x 6x
[2] ImageNet GoogLeNet - 87.28 0.98 3x 2x
[2] ImageNet SqueezeNet - 80.47 0.14 2x 1x
[3] ImageNet AlexNet 56.91 - 0.39 18x -

[1] Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in neural information processing
systems. 2015.
[2] Yang, T. J., Chen, Y. H., & Sze, V. (2017). Designing energy-efficient convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5687-5695).
[3] Guo, Yiwen, Anbang Yao, and Yurong Chen. "Dynamic network surgery for efficient dnns." Advances In Neural Information
Processing Systems. 2016.

 Up to 18x model size reduction
 Up to 6x FLOPs reduction
 Well-bounded accuracy (<1%) drop due to fine-grained pruning
 Must adopt sparse matrix representation format.
 Limited speedup on GPUs due to indexing overhead and irregular memory

access.

Structured Pruning Results

37

[1] Luo, Jian-Hao, Jianxin Wu, and Weiyao Lin. "Thinet: A filter level pruning method for deep neural network
compression." Proceedings of the IEEE international conference on computer vision. 2017.
[2] He, Yihui, Xiangyu Zhang, and Jian Sun. "Channel pruning for accelerating very deep neural networks." Proceedings of the IEEE
International Conference on Computer Vision. 2017.

 Up to 17x model size reduction
 Up to 3.5x FLOPs reduction
 Can lead to more accuracy drop due to coarse-grained pruning
 Vector-, kernel-, and filter-level pruning requires fewer indices and are much

more friendly to memory access
 Up to 5x speed up on GPUs
 FLOPs saving of filter-level pruning should translate into speed-up accordingly

on FPGAs and GPUs

Dataset CNN arch. accuracy/% Pruning
Granularity

Accuracy
drop/%

Model
compression

FLOPs
reduction

Speedup
ratio

[1] ImageNet ResNet-50 72.04 (Top-1) filter level 0.84 1.5x 1.6x -
[1] ImageNet ResNet-50 68.42 (Top-1) filter level 4.46 3.0x 3.5x -
[1] ImageNet VGG-16 - filter level 1.00 17x 3.3x -
[2] ImageNet ResNet-50 90.8 (Top-5) filter level 1.4 - - 2x
[2] ImageNet VGG-16 89.6 (Top-5) filter level 0.3 - - 5x

Impact on FPGA Implementation
3x Faster and 11.5x More E.-Efficient Than GPU

38
Han, Song, et al. "Ese: Efficient speech recognition engine with sparse lstm on fpga." 2017 ACM/SIGDA International Symposium on FPGA.

* FPGA DSP peak performance is scaled down by actual frequency

Non-structured pruning
LSTM
TIMIT

89.3
Xilinx XCKU060

16
16
No
200
282

1327
0.2x

0.0827
41
7

CPU (core i7 5930k) FPGA/CPU (actual) 43x
FPGA/GPU (peak) 0.12x

FPGA/GPU (actual) 3x

FPGA DSP peak (GLOP/s)*

Method
Network
Dataset

Accuracy (%)
Device

Weight bit-width
Act. bit-width

Weight on chip
Frequency (MHz)

Throughput (GOP/s)

Actural throughput/Device peak
Latency (ms)

Power (W)
Energy efficiency (GOP/s/W)

Accelation
ratio GPU (Pascal Titan X)

20x model size reduction
10x

2x

 Non-structured pruning is much more friendly to FPGA than GPU. FPGAs can implement
the indexing scheme into memory controller & computation pipeline with customized logic.

Techniques for Reducing Computational
Complexity of DNNs

39

• Reduce total FLOPs
– Pruning
– Computational transformation (CNN-specific)
– Simplified building blocks (CNN-specific)

• Reduce numerical precision
– Quantization
– Ternary/Binary Nets

Computational Transformation Key Concept

40

• Computational complexity of CNNs is dominated by Conv layers
• The key to accelerate CNN is to accelerate Conv computation
• Convolution has been widely used in image processing (filtering,

pattern matching, etc.), there exist rich research on the efficient
computation methods of Conv

• Apply existing fast algorithms of Conv to accelerate CNN

Image Courtesy of Cheng, Jian, et al.

Winograd: Minimal Filter Algorithm, Can Apply
to Multi-dim. Convolution with Stride Size of 1

41

1. Each channel of input feature map (FM) is divided into multiple small tiles
	of size 1 1 with an overlap of 1 elements

2. Each FM tile is processed as	

3. Each filter of size is pre-processed as

4. For the 2-D convolution of each FM tile and filter combination in a
channel, denoted as (× , ×), compute the element-wise matrix
multiplication ⨀

5. Results are summed over of all channels ∑
6. Apply inverse transform Y to get final convolution results

Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks. CVPR 2016.

Winograd breaks down a large-size matrix-matrix mult. of Conv
into a large batch of smaller-size matrix-matrix mult.

Winograd Benefits: Reduce Multiplications for
from to

42

• Significantly reduce mult. at the cost of increased additions (reduced total
FLOPs).

• Benefits to dedicated HW implementation (FPGAs, ASICs)
• Additions are much cheaper in dedicated HW
• A , G, B are constant transformation matrices with very low precision
• The mult. in , ⨀ , and Y can be efficiently

implemented by lookup tables and shift registers
• The large batch of smaller-size matrix-matrix mult. can be computed in

a highly parallel fashion.

m =2, r =3 m =4, r =3 m =6, r =3
Standard algorithm 36 144 324
Winograd algorithm 16 36 64

Arithmetic complexity reduction 2.25x 4x 5.06x

F(m*m, r*r)
Multiplications

Winograd Examples

Huang, Y., et al. "A High-efficiency FPGA-based Accelerator for Convolutional Neural Networks using Winograd Algorithm."
Journal of Physics: Conference Series. Vol. 1026. No. 1. IOP Publishing, 2018.

Winograd Can Improve GPU Performance
Especially for Small Batch Size

43

• 2.26x speedup for batch size = 1 for no accuracy drop
• The smaller-size matrix-matrix mult. can exploit L2 cache more efficiently and

reduce DRAM access
• The large batch matrix-matrix mult. can be highly parallelized in GPU execution
• Leads to higher GPU utilization especially at small batch sizes

Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016.

Fast Fourier Transform (FFT): Fast Algorithm for
Discrete Fourier Transform (DFT)

44

DFT

FFT

Symmetric

• DFT: A linear mapping that Transform a signal into frequency domain

Structurally Sparse

Dual of The Convolution Theorem

45

• Convolution in one domain equals point-wise multiplication in the
other domain

• Convolution and point-wise multiplication are inter-changeable
through domain transformation

FFT

IFFT

FFT: Transform 2D/3D Conv into Element-wise
Matrix Multiplication in Frequency Domain

46

• Reduce the computational complexity to

• Can further reduce the computational complexity to
using the overlap-and-add method when input feature map size is
much larger than the filter size

• FFT based approach is more competitive for large kernel size (5)

• For small kernel sizes (e.g. 1 1, 3 3), Winogram based approach
is typically more effective.

• For small kernel sizes, FFT based approach must use large tile size
(e.g. 64 64) to further reduce the multiplication complexity to the
Winograd level, which will require larger memory workspace to hold
transformed data

Abdelouahab, Kamel, et al. "Accelerating CNN inference on FPGAs: A Survey." arXiv preprint arXiv:1806.01683 (2018).

Impact on FPGA Implementation
Winograd Is More Effective Than FFT

47
Abdelouahab, Kamel, et al. "Accelerating CNN inference on FPGAs: A Survey." arXiv preprint arXiv:1806.01683 (2018).

2.89

1.85

0.66

Normalized
Throughput#

For “fair” comparison, the throughput is normalized by frequency and DSP parallelism (assumed doubled for
Fixed-16 to cancel out the impact of quantization).

• For AlexNet, Winograd and FFT improves the FPGA performance by 4.3x and 2.7x,
respectively, comparing to general matrix multiplication (GEMM)

• For VGG, the improvement is 3.5x and 3.1x, respectively, over GEMM
• Winograd based implementation is 1.1-1.6x faster than FFT based implementation

3.02

2.75

0.86

Techniques for Reducing Computational
Complexity of DNNs

48

• Reduce total FLOPs
– Pruning
– Winograd (CNN-specific)
– Simplified building blocks (CNN-specific)

• Reduce numerical precision
– Quantization
– Ternary/Binary Nets

MobileNet: Factorize A Convolution into 2 Stages
Depth-wise and Point-wise Convolution

49

 Depth-wise convolution applies a single filter per each input channel
 Point-wise (1x1) convolution creates a linear combination of the

depth-wise convolution outputs
 Filtering of each input channel and channel combining are performed

separately

Conventional Conv Layer Depth Separable Convolution

Howard, A. et al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861.

∗

FLOPs Saving

MobileNet – Results

50

Comparison with other networks
 3-27x FLOPs saving
 1.6-33x Memory saving
 <1% accuracy drop

Howard, A. et al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861.

Comparison with conventional Conv
 9x FLOPs saving
 7x Memory saving
 <1% accuracy drop

ShuffleNet: Point-wise Group Conv + Channel
Shuffle for Low Complexity and High Accuracy

Shuffle unitGroup Conv

 Build on top of the bottleneck unit proposed by ResNet
 Group convolution: divide input channels and filters into G groups, cross

talk is only allowed within the same group. Large FLOPs reduction with
compromised accuracy

 Channel shuffle: shuffle the channel-specific feature maps in each unit to
allow cross talk among groups. Enhance accuracy w/o increasing FLOPs

Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018.

51
Group Conv + Channel Shuffle

Comparison of ShuffleNet and MobileNet

20

25

30

35

40

45

50

55

0 500 1000 1500 2000 2500

Im
ag

en
et

 to
p-

1
er

ro
r

GFLOPs

ShuffleNet ResNet MobileNet

GoogleNet SqueezeNet AlexNet

FLOPs reduction
(within 2% accuracy drop)
 ShuffleNet: 8-14x
 MobileNet: 4-14x

AlexNet Accuracy

GoogleNet Accuracy

ResNet Accuracy

52

• ShuffleNet has a better accuracy FLOPs tradeoff especially in the
high-accuracy region

• Within 2% drop from ResNet accuracy, ShuffleNet and MobileNet
achieves 8x and 4x FLOPs reduction, respectively.

Impact on FPGA Implementation

53

 MobileNet achieves 9x faster inference on FPGA than ResNet-50 with a
accuracy drop of 5%

 MobileNet’s building block is high structural and FPGA friendly, the FLOPs
reduction is well-reflected by FPGA inference speed-up.

Zhao, Ruizhe, et al. "Towards efficient convolutional neural network for domain-specific applications on FPGA." 2018 28th
International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2018.

6.8x 12.7x

9.0x 7.8x

Evaluation on Stratix V 5GSD8 FPGA

Techniques for Reducing Computational
Complexity of DNNs

54

• Reduce total FLOPs
– Pruning
– Winograd (CNN-specific)
– Simplified building blocks (CNN-specific)

• Reduce numerical precision
– Quantization
– Ternary/Binary Nets

Quantization Is Pervasive
Widely Used in DSP HW Design

55

• Floating-point and fixed-point data format is efficient in
representing a large and limited dynamic range, respectively
– General-purpose hardware adopts floating-point data formats
– Application-specific and dedicated hardware adopts fixed-point data

formats

• Minimizing numerical precision is critical to HW design
– HW cost and power efficiency (add/mult complexity and memory

footprint, power) is proportional to the word-length of a fixed-point
data format.

• The minimum word-length needed for HW design depends on
– Dynamic range of input data/signal
– Operations type and iteration bound in the processing pipeline
– Error tolerance or precision requirement of the final results

Good Reasons to Quantize A DNN

56

• A real-valued network is typically numerically redundant
– DNNs are application-specific and deals with input data/signal with

a limited dynamic range and have deterministic operators and
iteration bound as well as error tolerance to quantization noise

• Can be combined with FLOPs reduction techniques and broadly
applicable to a wide range of DNN models

• Smaller model size and memory footprint, better cache reuse
• Increase the parallelism of computation and inference speed

– GPUs and FPGAs can trade off parallelism with numerical precision
– GPUs: double, single, half, INT8, INT4, bit-wise
– FPGA supports all numerical precision due to hardware reconfigurability,

and is highly efficient for single and all fixed-point, and bit-wise
arithmetic.

Quantization Key Concepts

57

• Analyze the statistics of model parameters to determine either the
optimized wordlength or quantizers (given pre-defined word-
length) that minimizes the accuracy drop of the network
– A quantizer is defined by its scale ∆	and zero-point, can be asymmetric or

symmetric depending on where the zero-point is
– Optional fine-turning can be followed to compensate for accuracy drop

• Weights and activations must be analyzed separately and can use
different word-length and/or quantizers
– Activation quantization analysis require forward propagation with enough

validation data (weight quantization analysis does not)

• Quantization can be done at different granularities
– E.g. in CNNs, weights in convolutional layers, weights in fully connected

layers, and activations can use different word-length and/or quantizers [P.
Gysel, et al. ICLR 2016]

Quantization Key Concepts

58

• Weight/activation quantization of CNNs can be further optimized
at a finer granularity
– To optimize the quantizer parameters, ∆	and zero-point for each unit

• Per-layer quantization: the entire 4D tensor of convolutional
kernels and the activations in one convolutional layer use the same
quantizer, those of different convolutional layers use different
quantizers.

• Per-channel quantization: each 3D convolutional kernel in each
convolutional layer (responsible for producing one output feature
map) uses a different quantizer
– Per-channel activation quantization is typically not considered as it would

complicate the computation of convolutions for the next layer.

Post-Training Quantization Approach:
Fine-grained Quantization w/ Quantizer Opt.

59Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper." arXiv preprint
arXiv:1806.08342 (2018).

1. Start with a fully trained model

2. Define a desired word-length of weights and activation (8 bit is
generally a good number to start with)

3. Perform per-channel quantization on weights by optimizing the
the quantizer (and zero-point) per channel in each layer with
asymmetric range to minimize the quantization errors

4. Perform per-layer quantization on activations by forward
propagation with validation data and quantized weights and
optimizing the quantizer of activations per layer to minimize the
accuracy drop

Post-Training Quantization Results on
ImageNet (8-bit, 4x Model Size Saving)

60

 Weight quantization is more sensitive to accuracy drop
 Asymmetric per-channel weight quantization + per-layer activation

quantization produces the best accuracy
 8-bit word-length lead to 0-2.2% accuracy drop
 Fine-tuning based on the quantized data format can be applied to compensate

for the accuracy drop (similar to in-training quantization)
Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper." arXiv preprint
arXiv:1806.08342 (2018).

Weight Quantization Schemes

Per-layer

In-training Quantization Approach

61

• Train a model from scratch with quantization effect being modeled

• Maintain weights and activation as floating-point numbers and
quantize them in a simulated fashion (similar to post-training) for
both forward and backward propagation to model the effect of
quantization
– The gradient value uses full-precision and is calculated with respect to the

simulated quantized parameters

• Maintain full-precision shadow weights and update them with
gradients so that small gradient values can be added up instead of
underflowed
– The simulated quantized weights are sampled from the full-precision

shadow weights after each update
Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper." arXiv preprint
arXiv:1806.08342 (2018).

In-training v.s. Post-training Quantization
Results on ImageNet (8-bit, 4x Model Size Saving)

62Krishnamoorthi, Raghuraman. "Quantizing deep convolutional networks for efficient inference: A whitepaper." arXiv preprint
arXiv:1806.08342 (2018).

In-training quantization

 In-training quantization provides the best accuracy and allows for simpler
quantization schemes

 Asymmetric per-layer and symmetric per-channel can bound the accuracy drop to
≤1.8% and 1%, respectively, better than post-training w/ asymmetric per-channel

Post-training quantization

1 2
Quantization + Winograd Quantization + SVD FC

VGG-16 VGG-16
CIFAR-10 ImageNet

93.5 1.1% drop
Altera Stratix V Zynq XC7Z045

16 16
16 16

200 150
2561 136
732 ‐

392.6 201
1.9x 0.7x
10.3 -

- 9.63
- 14.22

Accelation ratio 6x (i5-4590) -

Normalized Throughput (GOP/s)#

Device
Weight bit-width

Act. bit-width
Frequency (MHz)

Throughput (GOP/s)

Reference
Method
Network
Dataset

Accuracy (%)

FPGA/CPU (actual)

FPGA 27-bit DSP peak (FLOP/s)*
Actural thpt/Device peak

Latency (ms)
Power (W)

Energy efficiency (GOP/s/W)

Impact on FPGA Implementation

63

 Reduced numerical precision increases the computation parallelism due to HW
flexibility of FPGA. Each 27-bit mult. In Stratix V can be used as two 18-bit mult.

[1] Zhao, Ruizhe, et al. "Towards efficient convolutional neural network for domain-specific applications on FPGA." 2018 28th
International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2018.
[2] Qiu, Jiantao, et al. "Going deeper with embedded fpga platform for convolutional neural network." Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2016.

* FPGA DSP peak performance is scaled down by actual frequency
Normalized by the accelerator factor of Wingrad (3.5x) to cancel out the impact of Winograd method.

Techniques for Reducing Computational
Complexity of DNNs

64

• Reduce total FLOPs
– Pruning
– Winograd (CNN-specific)
– Simplified building blocks (CNN-specific)

• Reduce numerical precision
– Quantization
– Ternary/Binary Nets

Ternary/Binary Nets: Ternary/Binary Weights
and/or Activations

65
Full-precision CNN Ternary/Binary CNN

Bitwise logic and
bit counts

Ternarization or
Binarization

Input Feature Map

• A ternary/binary weight/activation just need 2/1 bit for representation
– Many binary nets keep 1st-layer weights floating-point for accuracy

• Convolution becomes bitwise logic + short addition or bit count
• Significant reduction of computational complexity and model size
• Large impact on FPGA/ASIC performance (throughput, power, E. Eff.)

– Enable massive parallelism and on-chip weight storage

T/BNN Training: In-training Quantization w/ Pre-
defined or Learned Ternary/Binary Quantizers

66

Ternary: {-1, 0, 1} or {-Wn, 0, Wp}
Binary: {-1, 1} or {-Wn, Wp}

Floating-point or
Ternary: {-1, 0, 1}
Binary: {-1, 1}

• A ternary/binary quantizer is defined by {-Wn, 0, Wp}/{Wn, Wp} and
can be symmetric or asymmetric

• The quantizers can be pre-defined as Wn=Wp=1 or optimized by learning
• The granularity of weight quantization can be global, per-layer, per-

kernel and that of weight quantization is typically global or per-layer

Ternary Net Results

67

 Pre-defined ternary quantizer can bound accuracy drop to 0.16% and
0.38% on MNIST and CIFAR-10, respectively.

 Learned ternary weights with floating activation can further enhance
the accuracy and achieve 16x model size reduction with 4.3%
accuracy drop on ImageNet.

[1] Li, Fengfu, Bo Zhang, and Bin Liu. "Ternary weight networks." NIPS (2016).
[2] Alemdar, Hande, et al. "Ternary neural networks for resource-efficient AI applications." 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2017.
[3] Deng, Lei, et al. "Gated xnor networks: Deep neural networks with ternary weights and activations under a unified discretization
framework." arXiv preprint arXiv:1705.09283 4.9 (2017).

MNIST
LeNet-5

CIFAR-10
VGG-7

ImageNet
AlexNet

ImageNet
ResNet-18

Baseline float float MUL, ADD 99.48 92.88 57.2/80.2 69.6/89.2
TWN[1] float {-Wn,0,+Wp} ADD 99.38 92.56 54.5/76.8 65.3/86.2
TNN[2] {-1,0,1} {-1,0,1} AND, bitcount 98.33 87.89 - -

GXNOR[3] {-1,0,1} {-1,0,1} AND, bitcount 99.32 92.5 - -

Performance
Method Activations Weights

Main
Operations

Ternary Net’s Impact on FPGA Implementation

68Nurvitadhi, E., et al. (2017, February). Can FPGAs beat GPUs in accelerating next-generation deep neural networks?.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays(pp. 5-14). ACM.

• FPGA implementation achieves 1.4x higher throughput and 2.4x better energy
efficiency than GPU for <1% accuracy drop.

• For Ternary convolutions, bit-wise logics are mapped onto LUTs, but the floating-
point accumulation are still mapped onto DSP slices.

• The computation parallelism is much improved but still limited by the amount of
DSP resources available on an FPGA.

Binary Net Results

69

 About 32x model size reduction from single-precision to 1 bit.
 Learned binary weights and activations can bound accuracy drop to

0.3% and 2.8% on MNIST and CIFAR-10, respectively. Use ternary
activations can further improve the accuracy.

 Learned binary weights with learned ternary activations can bound
accuracy drop to 7% on ImageNet.

MNIST
LeNet-5

CIFAR-10
VGG

ImageNet
AlexNet

ImageNet
ResNet-18

Baseline float float MUL, ADD 99.48 92.88 57.2/80.2 69.6/89.2
[1]BWN float {-Wn,+Wp} ADD 99.38 92.58 56.8/79.4 60.8/83
[2]BC float {-1,+1} ADD 98.82 91.76 35.5/61.0 -
[3]BNN {-1,+1} {-1,+1} XNOR, bitcount 98.6 89.86 27.9/50.42 -
[4]XNOR {-Wn,+Wp} {-Wn,+Wp} XNOR, bitcount, ADD 99.21 90.02 44.2/69.2 55.9/79.1
[5]DoReFa {0,1} {0,1} XNOR, bitcount - - 47.7/- -
[6]TBN {-1,0,+1} {-Wn,+Wp} AND, XNOR, bitcount 98.38 90.85 55.6/79.0 58.2/81.0
[7]LQ-Net 2 bits {-Wn,+Wp} AND, XNOR, bitcount - - - 62.6/84.3

Method Activations Weights Main operations
Performance

[1] Rastegari, Mohammad, et al. CVPR, 2016. [2] Courbariaux, Matthieu, et al. Advances in neural information processing systems.
2015. [3] Courbariaux, Matthieu, et al., arXiv preprint arXiv:1602.02830 (2016). [4] Rastegari, Mohammad, et al., ECCV, 2016. [5] Zhou,
Shuchang, et al., arXiv preprint arXiv:1606.06160 (2016). [6] Wan, Diwen, et al., ECCV, 2018. [7] Zhang, Dongqing, et al., ECCV, 2018.

Impact on FPGA Implementation

70

[1] Li, Yixing, et al. "A GPU-outperforming FPGA accelerator architecture for binary convolutional neural networks." ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14.2 (2018): 18.
[2] Zhao, Ritchie, et al. "Accelerating binarized convolutional neural networks with software-programmable fpgas." Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2017.
[3] Umuroglu, Yaman, et al. "Finn: A framework for fast, scalable binarized neural network inference." Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 2017.

 Binary convolutions can be fully mapped onto LUTs and enable massive
computation parallelism on FPGA

 Can easily achieve a super high throughput that is >20x higher than the peak
full-precision DSP throughput

* FPGA DSP peak performance is scaled down by actual frequency

1 2 3
Network AlexNet AlexNet AlexNet
Dataset CIFAR-10 CIFAR-10 CIFAR-10
Accuracy (%) 88% 89% 81%
Device Xilinx Virtex-7 Zynq 7Z020 Xilinx Virtex-7
Weight bit-width 1 1 1
Act. bit-width 1 1 1
Frequency 90 143 2000
Throughput (GOP/s) 7663 207.8 11600
Device peak (GOP/s)* 337 92 748
Throughput/Device peak(%) 23x 1.6x 16x
Latency (ms) - 5.94 0.55
Power (W) 8.2 4.7 -
Energy efficiency (GOP/s/W) 935 GOPS/s 35.8 imgs/s/W -

Zoom Into [1] From The Previous Table
Binary Net FPGA Implementation Details

71

• A binary convolution is XNOR + bit-count
• All convolution operations can be fully mapped onto LUT resource—the

key to enable massive parallelism on FPGAs
• To also utilize the available DSP recourses, convolution can be folded

proportionally (based on a throughput constraint)—the key to maximize
FPGA resource utilization

Li, Yixing, et al. "A GPU-outperforming FPGA accelerator architecture for binary convolutional neural networks." ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14.2 (2018): 18.

Zoom Into [1] From The Previous Table
Binary Net FPGA Implementation Details

72

• Huge amount of LUT resources allow us to explore both spatial and
temporal (pipeline) parallelism
– All layers are mapped onto FPGA with optimized folding factors
– Double buffering memory channel is used between adjacent layers to

create a deep pipelined streaming architecture
• All binary weights are stored in BRAM on-chip

– Avoid large power consumption and bandwidth bottleneck of DRAM

BRAMBRAM BRAM

Li, Yixing, et al. "A GPU-outperforming FPGA accelerator architecture for binary convolutional neural networks." ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14.2 (2018): 18.

Zoom Into [1] From The Previous Table
Binary Net FPGA Implementation Details

73

• For a deep pipelined streaming architecture, the throughput is
determined by the slowest layer
– The optimized architecture should have equal processing

latency/throughput for all layers.

• The optimal folding factor and maximum parallelism that
balance the throughput across all layers are chosen

Zoom Into [1] From The Previous Table
Binary Net FPGA Implementation Details

74

• The computation parallelism is bounded by LUT (100,000s)
not DSP (1,000s) as the binary convolution is largely mapped
onto LUTs

• This is the key to enable massive parallelism of computation
on FPGAs
– Each 6-input LUT can map 2.5 XNORs, peak device binary conv

parallelism is about 433,200 2.5 1,000,000

Zoom Into [1] From The Previous Table
Binary Net FPGA Implementation Results

75

• 8.3x faster and 75x more energy-efficient than a Titan X GPU for
processing small batch size of 1

Li, Yixing, et al. "A GPU-outperforming FPGA accelerator architecture for binary convolutional neural networks." ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14.2 (2018): 18.

Throughput and energy efficiency comparison with GPU implementations

Hardware-friendliness Comparison

76

* FPGA DSP peak performance is scaled down by actual frequency

1 2 3 1 4 5 6
MobileNet TernaryNet Pruning Quantization Quantization Winograd BinaryNet
mobilenet ResNet-50 LSTM VGG-16 VGG-16 VGG AlexNet
CIFAR-10 ImageNet TIMIT CIFAR-10 ImageNet ImageNet CIFAR-10

88.3 ~1% drop 89.3 93.5 1.1% drop - 87.80%
Altera

Stratix V
Altera

Stratix 10
Xilinx

XCKU060
Altera

Stratix V
Zynq

XC7Z045
Xilinx

ZCU102
Xilinx

Virtex-7
16 2 16 16 16 16 1
16 6 16 16 16 16 1
No No No No No No Yes
200 450 200 200 150 200 90

1287 6500 282 2561 136 2479 7663
2500 5000 1327 826 201 1496 337
1.5x 1.3x 0.2x 3.1x 0.7x 1.7x 23x
0.8 - 0.0827 10.3 - - -
- - 41 - 9.63 23.6 8.2
- 40 32 - 14.22 105.4 935

CPU FPGA/CPU (actual) - - 43x (core i7
5930k)

6x (i5-4590) - - -

GPU device - Titax X Pascal Titan X - - Titan X Titan X
FPGA/GPU (peak) - 1.4x 0.12x - - 0.2x 0.048x

FPGA/GPU (actual) - 1.5x 3x - - 0.6x 10x

Reference
Method
Network
Dataset

Frequency (MHz)

GPU

Accelation
ratio

Accuracy (%)

Device

Weight bit-width
Act. bit-width

Weight on chip

Throughput (GOP/s)
FPGA DSP peak (GOP/s)*

Actual throughput/Device peak
Latency (ms)

Energy efficiency (GOP/s/W)
Power (W)

• Quantization are used in combination with all other methods
• Winograd is equally friendly to GPU and FPGA
• Non-structural pruning is more FPGA friendly than GPU.
• BinaryNet is extremely FPGA friendly—enable massive parallelism on FPGAs.

Reference of Previous Page

77

[1] Zhao, Ruizhe, et al. "Towards efficient convolutional neural network for domain-specific
applications on FPGA." 2018 28th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2018.

[2] Nurvitadhi, E., et al. (2017, February). Can FPGAs beat GPUs in accelerating next-generation
deep neural networks?. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays(pp. 5-14). ACM.

[3] Han, Song, et al. "Ese: Efficient speech recognition engine with sparse lstm on fpga."
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2017.

[4] Qiu, Jiantao, et al. "Going deeper with embedded fpga platform for convolutional neural
network." Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2016.

[5] Liang, Yun, et al. "Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs."
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2019).

[6] Li, Yixing, et al. "A GPU-outperforming FPGA accelerator architecture for binary convolutional
neural networks." ACM Journal on Emerging Technologies in Computing Systems (JETC) 14.2
(2018): 18.

Module 3 Conclusion

78

• Cloud is insufficient for supporting the fast-growing IoT.

• Edge computing will become main-stream and pervasive in the
era of IoT.

• FPGAs are highly suitable for and will play an important role in
edge computing.
– Due to architectural adaptiveness to algorithm characteristics,

capability to explore both spatial and temporal parallelism,
performance invariance to small batch size, high throughput and
energy efficiency for I/O data processing.

• The high computational complexity of DNN models is a big
challenge for edge deployment.

Module 3 Conclusion

79

• The use of a combination of techniques for reducing
computational complexity of DNN models can significantly
improve the inference performance on edge.

• Non-structural pruning is more FPGA friendly, while structural
pruning are friendly to both FPGAs and GPUs.

• Winograd and simplified building blocks reduce computations
in a highly structural way thus are equally friendly to GPUs and
FPGAs.

• Post-training or In-training quantization with 8 bits should be
applied in combination with other methods whenever
applicable.

Module 3 Conclusion

80

• Binary Nets are extremely FPGA friendly.

• Binary Nets enable massive computation parallelism and on-
chip weight storage, which can provide GPU-outperforming
performance in terms of both throughput and energy efficiency.

• Binary Nets should be your top choice for edge deployment on
FPGAs as along as a satisfactory accuracy can be achieved for
your target application.

Acknowledgement

81

• Thanks to Ms. Yixing Li for her kind assistance in
creating the slides of Module 3!

Thank you for your attention!

Questions?

