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Abstract

Deep neural networks have achieved remarkable suc-

cess in computer vision tasks. Existing neural networks

mainly operate in the spatial domain with fixed input sizes.

For practical applications, images are usually large and

have to be downsampled to the predetermined input size

of neural networks. Even though the downsampling oper-

ations reduce computation and the required communication

bandwidth, it removes both redundant and salient informa-

tion obliviously, which results in accuracy degradation. In-

spired by digital signal processing theories, we analyze the

spectral bias from the frequency perspective and propose a

learning-based frequency selection method to identify the

trivial frequency components which can be removed with-

out accuracy loss. The proposed method of learning in the

frequency domain leverages identical structures of the well-

known neural networks, such as ResNet-50, MobileNetV2,

and Mask R-CNN, while accepting the frequency-domain

information as the input. Experiment results show that

learning in the frequency domain with static channel se-

lection can achieve higher accuracy than the conventional

spatial downsampling approach and meanwhile further re-

duce the input data size. Specifically for ImageNet clas-

sification with the same input size, the proposed method

achieves 1.60% and 0.63% top-1 accuracy improvements

on ResNet-50 and MobileNetV2, respectively. Even with

half input size, the proposed method still improves the top-1

accuracy on ResNet-50 by 1.42%. In addition, we observe

a 0.8% average precision improvement on Mask R-CNN for

instance segmentation on the COCO dataset.

1. Introduction

Convolutional neural networks (CNNs) have revolution-

ized the computer vision community because of their ex-

ceptional performance on various tasks such as image clas-

sification [1, 2], object detection [3, 4], and semantic seg-

mentation [5, 6]. Constrained by the computing resources

∗Work partially done during an internship at Alibaba.

and memory limitations, most CNN models only accept

RGB images at low resolutions (e.g., 224 ⇥ 224). How-

ever, images produced by modern cameras are usually much

larger. For example, the high definition (HD) resolution im-

ages (1920⇥1080) are considered relatively small by mod-

ern standards. Even the average image resolution in the

ImageNet dataset [7] is 482⇥415, which is roughly four

times the size accepted by most CNN models. Therefore,

a large portion of real-world images are aggressively down-

sized to 224⇥224 to meet the input requirement of classi-

fication networks. However, image downsizing inevitably

incurs information loss and accuracy degradation [8]. Prior

works [9, 10] aim to reduce information loss by learning

task-aware downsizing networks. However, those networks

are task-specific and require additional computation, which

are not favorable in practical applications. In this paper, we

propose to reshape the high-resolution images in the fre-

quency domain, i.e., discrete cosine transform (DCT) do-

main 1, rather than resizing them in the spatial domain,

and then feed the reshaped DCT coefficients to CNN mod-

els for inference. Our method requires little modification

to the existing CNN models that take RGB images as in-

put. Thus, it is a universal replacement for the routine data

pre-processing pipelines. We demonstrate that our method

achieves higher accuracy in image classification, object de-

tection, and instance segmentation tasks than the conven-

tional RGB-based methods with an equal or smaller input

data size. The proposed method leads to a direct reduction

in the required inter-chip communication bandwidth that is

often a bottleneck in modern deep learning inference sys-

tems, i.e., the computational throughput of rapidly evolving

AI accelerators/GPUs is becoming increasingly higher than

the data loading throughput of CPUs, as shown in Figure 1.

Inspired by the observation that human visual system

(HVS) has unequal sensitivity to different frequency com-

ponents [11], we analyze the image classification, detec-

tion and segmentation task in the frequency domain and

find that CNN models are more sensitive to low-frequency

channels than the high-frequency channels, which coincides

1We interchangeably use the terms frequency domain and DCT domain

in the context of this paper.
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Figure 1: (a) The workflow of the conventional CNN-based methods using RGB images as input. (b) The workflow of the

proposed method using DCT coefficients as input. CB represents the required communication bandwidth between CPU and

GPU/accelerator.

with HVS. This observation is validated by a learning-based

channel selection method that consists of multiple “on-off

switches”. The DCT coefficients with the same frequency

are packed as one channel, and each switch is stacked on a

specific frequency channel to either allow the entire channel

to flow into the network or not.

Using the decoded high-fidelity images for model train-

ing and inference has posed significant challenges, from

both data transfer and computation perspectives [12, 13].

Due to the spectral bias of the CNN models, one can only

keep the important frequency channels during inference

without losing accuracy. In this paper, we also develop

a static channel selection approach to preserve the salient

channels rather than using the entire frequency spectrum

for inference. Experiment results show that the CNN mod-

els still retain the same accuracy when the input data size is

reduced by 87.5%.

The contributions of this paper are as follows:

• We propose a method of learning in the frequency do-

main (using DCT coefficients as input), which requires

little modification to the existing CNN models that

take RGB input. We validate our method on ResNet-

50 and MobileNetV2 for the image classification task

and Mask R-CNN for the instance segmentation task.

• We show that learning in the frequency domain bet-

ter preserves image information in the pre-processing

stage than the conventional spatial downsampling ap-

proach (spatially resizing the images to 224⇥224, the

default input size of most CNN models) and conse-

quently achieves improved accuracy, i.e., +1.60% on

ResNet-50 and +0.63% on MobileNetV2 for the Ima-

geNet classification task, +0.8% on Mask R-CNN for

both object detection and instance segmentation tasks.

• We analyze the spectral bias from the frequency per-

spective and show that the CNN models are more sen-

sitive to low-frequency channels than high-frequency

channels, similar to the human visual system (HVS).

• We propose a learning-based dynamic channel selec-

tion method to identify the trivial frequency compo-

nents for static removal during inference. Experiment

results on ResNet-50 show that one can prune up to

87.5% of the frequency channels using the proposed

channel selection method with no or little accuracy

degradation in the ImageNet classification task.

• To the best of our knowledge, this is the first work that

explores learning in the frequency domain for object

detection and instance segmentation. Experiment re-

sults on Mask R-CNN show that learning in the fre-

quency domain can achieve a 0.8% average precision

improvement for the instance segmentation task on the

COCO dataset.

2. Related Work

Learning in the frequency domain: Compressed repre-

sentations in the frequency domain contain rich patterns

for image understanding tasks. [14, 15, 16] train dedicated

autoencoder-based networks on compression and inference

tasks jointly. [17] extracts features from the frequency do-

main to classify images. [18] proposes a model conversion

algorithm to convert the spatial-domain CNN models to the

frequency domain. Our method differs from the prior works

in two aspects. First, we avoid the complex model transition

procedure from the spatial to the frequency domain. Thus,

our method has a broader application scope. Second, we

provide an analysis method to interpret the spectral bias of

neural networks in the frequency domain.

Dynamic Neural Networks: Prior works [19, 20, 21, 22,

23] propose to selectively skip the convolutional blocks

on the fly based on the activations of the previous blocks.
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Figure 2: The data pre-processing pipeline for learning in the frequency domain.

These works adjust the model complexity in response to the

input of each convolutional block. Only the intermediate

features that are most relevant to the inputs are computed

in the inference stage to reduce computation cost. In con-

trast, our method exclusively operates on the raw inputs and

distills the salient frequency components to lower the com-

munication bandwidth requirement for input data.

Efficient Network Training: There are substantial recent

interests in training efficient networks [24, 25, 26, 27],

which focus on network compression via kernel pruning,

learned quantization, and entropy encoding. Another line

of works aim to compress the CNN models in the frequency

domain. [28] reduces the storage space by converting filter

weights to the frequency domain and using a hash function

to group the frequency parameters into hash buckets. [29]

also transforms the kernels to the frequency domain and dis-

cards the low-energy frequency coefficients for high com-

pression. [30] constrains the frequency spectra of CNN

kernels to reduce memory consumption. These network

compression works in the frequency domain all rely on the

FFT-based convolution, which is generally more effective

on larger kernels. Nevertheless, the state-of-the-art CNN

models use small kernels, e.g., 3 ⇥ 3 or 1 ⇥ 1. Exten-

sive efforts need to be taken to optimize the computation

efficiency of these FFT-based CNN models [31]. In con-

trast, our method makes little modification to the existing

CNN models. Thus, our method requires no extra effort

to improve its computation efficiency on the CNN models

with small kernels. Another fundamental difference is that

our method aims at reducing the input data size rather than

model complexity.

3. Methodology

In this paper, we propose a generic method on learning

in the frequency domain, including a data pre-processing

pipeline as well as an input data size pruning method.

Figure 1 shows the comparison of our method and the

conventional approach. In the conventional approach, high-

resolution RGB images are usually pre-processed on a CPU

and transmitted to a GPU/AI accelerator for real-time infer-

ence. Because uncompressed images in the RGB format are

usually large, the requirement of the communication band-

width between a CPU and a GPU/AI accelerator is usually

high. Such communication bandwidth can be the bottle-

neck of the system performance, as shown in Figure 1(a).

To reduce both the computation cost and the communica-

tion bandwidth requirement, high-resolution RGB images

are downsampled to smaller images, which often results in

information loss and thus lower inference accuracy.

In our method, high-resolution RGB images are still pre-

processed on a CPU. However, they are first transformed to

the YCbCr color space and then to the frequency domain.

This coincides with the most widely-used image compres-

sion standards, such as JPEG. All components of the same

frequency are grouped into one channel. In this way, mul-

tiple frequency channels are generated. As shown in Sec-

tion 3.2, certain frequency channels have bigger impact on

the inference accuracy than the others. Thus, we propose

to only preserve and transmit the most important frequency

channels to a GPU/AI accelerator for inference. Compared

to the conventional approach, the proposed method requires

less communication bandwidth and achieves higher accu-

racy at the same time.

We demonstrate that the input features in the frequency

domain can be applied to all existing CNN models de-

veloped in the spatial domain with minimal modification.

Specifically, one just need to remove the input CNN layer

and reserve the remaining residual blocks. The first resid-

ual layer is used as the input layer, and the number of input

channels is modified to fit the dimension of the DCT co-

efficient inputs. As such, a modified model can maintain

similar parameter count and computational complexity to

the original model.

Based on our frequency-domain model, we propose a
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Figure 3: Connecting the pre-processed input features in the

frequency domain to ResNet-50. The three input layers (the

dashed gray blocks) in a vanilla ResNet-50 are removed to

admit the 56⇥56⇥64 DCT inputs. We take 64 channels as

an example. This value can vary based on the channel se-

lection. In learning-based channel selection, all 192 chan-

nels are analyzed for their importance to accuracy, based on

which only a subset (⌧ 192 channels) is used in the static

selection approach.

learning-based channel selection method to explore the

spectral bias of a given CNN model, i.e., which frequency

components are more informative to the subsequent infer-

ence task. The findings motivate us to prune the trivial fre-

quency components for inference, which significantly re-

duces the input data size, consequently reducing both the

computational complexity of domain transformation and

the required communication bandwidth, while maintaining

inference accuracy.

3.1. Data Pre-processing in the Frequency Domain

The data pre-processing flow is shown in Figure 2. We

follow the pre-processing and augmentation flow in the spa-

tial domain, consisting of image resizing, cropping, and

flipping (spatial resize and crop in Figure 2). Then images

are transformed to the YCbCr color space and converted to

the frequency domain (DCT transform in Figure 2). The

two-dimensional DCT coefficients at the same frequency

are grouped into one channel to form three-dimensional

DCT cubes (DCT reshape in Figure 2). As will be dis-

cussed in Section 3.2, a subset of impactful frequency chan-

nels are selected (DCT channel select in Figure 2). The se-

lected channels in the YCbCr color space are concatenated

together to form one tensor (DCT concatenate in Figure 2).

Lastly, every frequency channel is normalized by the mean

and variance calculated from the training dataset.

The DCT reshape operation in Figure 2 groups a two-

dimensional DCT coefficients to a three-dimensional DCT

cube. Since the JPEG compression standard uses 8 ⇥ 8

DCT transformation on the YCbCr color space, we group

the components of the same frequency in all the 8⇥8 blocks

into one channel, maintaining their spatial relations at each

frequency. Thus, each of the Y, Cb, and Cr components pro-

vides 8 ⇥ 8 = 64 channels, one for each frequency, with a

total of 192 channels in the frequency domain. Suppose the

shape of the original RGB input image is H⇥W⇥C, where

C = 3 and the height and width of the image is denoted as

H and W , respectively. After converting to the frequency

domain, the input feature shape becomes H/8⇥W/8⇥64C,

which maintains the same input data size.

Since the input feature maps in the frequency domain are

smaller in the H and W dimensions but larger in the C di-

mension than the spatial-domain counterpart, we skip the

input layer of a conventional CNN model, which is usually

a stride-2 convolution. If a max-pooling operator immedi-

ately follows the input convolution (e.g., ResNet-50), we

skip the max-pooling operator as well. Then we adjust the

channel size of the next layer to match the number of chan-

nels in the frequency domain. It is illustrated in Figure 3.

This way, we minimally adjust the existing CNN models to

accept the frequency-domain features as input.

In the image classification task, the CNN models usually

take input features of the shape 224⇥224⇥3, which is usu-

ally downsampled from images with a much higher resolu-

tion. When the classification is performed in the frequency

domain, larger images can be taken as input. Take ResNet-

50 as an example, the input features in the frequency do-

main are connected to the first residue block with the num-

ber of channels adjusted to 192, forming an input feature of

the shape 56⇥56⇥192, as shown in Figure 2. That is DCT-

transformed from input images of size 448⇥448⇥3, which

preserves four times more information than the 224⇥224⇥3
counterpart in the spatial domain, at the cost of 4 times the

input feature size. Similarly, for the model MobileNetV2,

the input feature shape is 112 ⇥ 112 ⇥ 192, reshaped from

images of size 896⇥ 896⇥ 3. As discussed in Section 3.3,

the majority of the frequency channels can be pruned with-

out sacrificing accuracy. The frequency channel pruning op-

eration is referred to as DCT channel select in Figure 2.

1x1xC

C

H

W

1x1xCx2

Gumbel samples

C

H

W

1x1xC

Tensor 2

Tensor 1

Tensor 3 Tensor 4

Tensor 5

Figure 4: The gate module that generates the binary deci-

sions based on the features extracted by the SE-Block. The

white color channels of Tensor 5 indicate the unselected

channels.
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3.2. Learning-based Frequency Channel Selection

As different channels of the input feature are at different

frequencies, we conjecture that some frequency channels

are less informative to the subsequent tasks such as image

classification, object detection, and instance segmentation,

and removing the trivial frequency channels shall not result

in performance degradation. Thus, we propose a learning-

based channel selection mechanism to exploit the relative

importance of each input frequency channel. We employ

a dynamic gate module that assigns a binary score to each

frequency channel. The salient channels are rated as one,

the others as zero. The input frequency channels with zero

scores are detached from the network. Thus, the input data

size is reduced, leading to reduced computation complexity

of domain transformation and communication bandwidth

requirement. The proposed gate module is simple and can

be part of the model to be applied in online inference.

Figure 4 describes our proposed gate module in detail.

The input is of shape W ⇥H ⇥C (C = 192 in this paper),

with C frequency channels (Tensor 1 in Figure 4). It is first

converted to Tensor 2 in Figure 4 of shape 1⇥ 1⇥C by av-

erage pooling. Then it is converted to Tensor 3 in Figure 4

of shape 1 ⇥ 1 ⇥ C by a 1 ⇥ 1 convolutional layer. Con-

version from Tensor 1 to Tensor 3 is exactly the same as

a two-layer squeeze-and-excitation block (SE-Block) [32],

which utilizes the channel-wise information to emphasize

the informative features and suppress the trivial ones. Then,

Tensor 3 is converted to Tensor 4 in Figure 4 of the shape

1 ⇥ 1 ⇥ C ⇥ 2 by multiplying every element in Tensor 3

with two trainable parameters. During inference, the two

numbers for each of the 192 channels in Tensor 4 are nor-

malized and serve as the probability of being sampled as 0
or 1, and then, point-wise multiplied to the input frequency

channels to obtain Tensor 5 in Figure 4. As an example, if

the two numbers in the ith channel in Tensor 4 are 7.5 and

2.5, there is a 75% probability that the ith gate is turned off.

In other words, the ith frequency channel in Tensor 5 be-

comes all zeros 75% of the times, which effectively blocks

this frequency channel from being used for inference.

Our gate module differs from the conventional SE-Block

in two ways. First, the proposed gate module outputs a ten-

sor of dimension 1⇥ 1⇥C ⇥ 2, where the two numbers in

the last dimension describe the probability of being on and

off for each frequency channel, respectively. Thus we add

another 1⇥ 1 convolution layer for the conversion. Second,

the number multiplied to each frequency channel is either

0 or 1, i.e., a binary decision of using the frequency or not.

The decision is obtained by sampling a Bernoulli distribu-

tion Bern(p), where p is calculated by the 2 numbers in the

1⇥ 1⇥ C ⇥ 2 tensor mentioned above.

One of the challenges in the proposed gate module is

that the Bernoulli sampling process is not differentiable in

case one needs to update the weights in the gate module.

[33, 34, 35] propose a reparameterization method, called

Gumbel Softmax trick, which allows the gradients to back

propagate through a discrete sampling process (see Gumbel

samples in Figure 4).

Let x = (x1, x2, . . . , xC) be the input channels in the

frequency domain (C = 192) for a CNN model. Let F

denote the proposed gate module such that F(xi) 2 {0, 1},

for each frequency channel xi. Then xi is selected if

F(xi) 6= 0, i.e., F(xi)� xi 6= 0, (1)

where � is the element-wise product.

We add a regularization term to the loss function that

balances the number of selected frequency channels, which

is minimized together with the cross-entropy loss or other

accuracy-related loss. Our loss function is thus as follows,

L = LAcc + λ ·

CX

i=1

F(xi), (2)

where LAcc is the loss that is related to accuracy. λ is a

hyperparameter indicating the relative weight of the regu-

larization term.

3.3. Static Frequency Channel Selection

The learning-based channel selection provides a dy-

namic estimation of the importance of each frequency chan-

nel, i.e., different input images may have different subsets

of the frequency channels activated.

To understand the pattern of frequency channel activa-

tion, we plot two heat maps, one on the classification task

(Figure 5a) and one on the segmentation task (Figure 5b).

The number in each box indicates the frequency index of the

channel, with a lower and higher index indicating a lower

and higher frequency, respectively. The heat map value in-

dicates the likelihood a frequency channel being selected

for inference across all the validation images.

Based on the patterns in the heat maps shown in Figure 5,

we make several observations:

• The low-frequency channels (boxes with small in-

dices) are selected much more often than the high-

frequency channels (boxes with with large indices).

This demonstrates that low-frequency channels are

more informative than high-frequency channels in gen-

eral for vision inference tasks.

• The frequency channels in luma component Y are se-

lected more often than the channels in chroma compo-

nents Cb and Cr. This indicates that the luma compo-

nent is more informative for vision inference tasks.

• The heat maps share a common pattern between the

classification and segmentation tasks. This indicates

that the above-mentioned two observations are not spe-

cific to one task and is very likely to be general to more

high-level vision tasks.
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(a) Heat maps of Y, Cb, and Cr components on the ImageNet validation dataset.
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(b) Heat maps of Y, Cb, and Cr components on the COCO validation dataset

Figure 5: A heat map visualization of input frequency channels on the ImageNet validation dataset for image classification

and COCO validation dataset for instance segmentation. The numbers in each square represent the corresponding channel

indices. The color from bright to dark indicates the possibility of a channel being selected from low to high.

• Interestingly, some lower frequency channels have

lower probability of being selected than the slightly

higher frequency channels. For example, in Cb and

Cr components, both tasks favor Channel 6 and 9 over

Channel 5 and 3.

Those observations imply that the CNN models may in-

deed exhibit similar characteristics to the HVS, and the im-

age compression standards (e.g., JPEG) targeting human

eyes may be suitable for the CNN models as well.

The JPEG compression standard puts more bits to the

low-frequency and the luma components. Following the

same principle, we statically select the lower frequency

channels, with more emphasis on the luma component than

the chroma components. This ensures the frequency chan-

nels with higher activation probabilities are fed into the

CNN models. The rest of the frequency channels can be

pruned by either the image encoder or decoder to reduce the

required data transmission bandwidth and input data size.

4. Experiment Results

We benchmark our proposed methodology on three dif-

ferent high-level vision tasks: image classification, detec-

tion, and segmentation.

4.1. Experiment Settings on Image Classification

We benchmark our method on image classification using

the ImageNet 2012 Large-Scale Visual Recognition Chal-

lenge dataset (ILSVRC-2012) [36]. We use the stochas-

tic gradient descent (SGD) optimizer. SGD is applied with

an initial learning rate of 0.1, a momentum of 0.9, and a

weight decay of 4e-5. We choose ResNet-50 [37] and Mo-

bileNetV2 [38] as the CNN models because they contain

important building blocks (e.g., residue blocks and depth-

wise separable convolutions) widely used in modern CNN

models. Note that our method can be generally applied to

any CNN model. We train 210 and 150 epochs and decay

the learning rate by 0.1 every 50 epochs for ResNet-50 and

MobileNetV2, respectively.

To normalize the input channels, we compute the mean

and variance of the DCT coefficients for each of the 192

frequency channels separately on all the training images.

As described in Section 3.1, the input features in

the frequency domain are generated from images with a

much higher resolution than the spatial-domain counterpart.

However, some of the images in the ImageNet dataset have

lower resolutions. We perform similar pre-processing steps

as in the spatial domain, including resizing and cropping to

a larger image size, performing upsampling when needed.

4.2. Experiment Results on Image Classification

We train the ResNet-50 model with 192 frequency chan-

nel inputs on the image classification task using the ap-

proach described in Section 3.2. The gate module for chan-

nel selection is trained together with the ResNet-50 model.

Figure 5a shows a heat map of the selection results over
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Table 1: ResNet-50 classification results on ImageNet (validation). The input size of each method is normalized over the

baseline ResNet-50. The input frequency channels are selected with the square and triangle channel selection pattern if the

postfix S and T is specified, respectively.

ResNet-50 #Channels Size Per Channel Top-1 Top-5 Normalized Input Size

RGB 3 224⇥224 75.780 92.650 1.0

YCbCr 3 224⇥224 75.234 92.544 1.0

DCT-192 [17] 192 28⇥28 76.060 93.020 1.0

DCT-192 (ours) 192 56⇥56 77.194 93.454 4.0

DCT-24D (ours) 24 56⇥56 77.166 93.560 0.5

DCT-24S (ours) 24 56⇥56 77.196 93.504 0.5

DCT-24T (ours) 24 56⇥56 77.148 93.326 0.5

DCT-48S (ours) 48 56⇥56 77.384 93.554 1.0

DCT-48T (ours) 48 56⇥56 77.338 93.614 1.0

DCT-64S (ours) 64 56⇥56 77.232 93.624 1.3

DCT-64T (ours) 64 56⇥56 77.280 93.456 1.3

Table 2: MobileNetV2 classification results on ImageNet (validation).

MobileNetV2 #Channels Size Per Channel Top-1 Top-5 Normalized Input Size

RGB 3 224⇥224 71.702 90.415 1.0

DCT-6S (ours) 6 112⇥112 71.776 90.258 0.5

DCT-12S (ours) 12 112⇥112 72.156 90.634 1.0

DCT-24S (ours) 24 112⇥112 72.364 90.606 2.0

DCT-32S (ours) 32 112⇥112 72.282 90.592 2.7

the validation set with λ = 0.1. Note that different regu-

larization parameters λ generate different number of acti-

vated frequency channels in heat maps. A typical example

is shown in Figure 5a, that most channels (� 80%) have

very low possibility ( 3%) of being selected.

Observing that low frequency channels are more impor-

tant in the heat maps, we explore the sensitivity of the pre-

cise shapes of selected channels. In Table 1, DCT-24D

shows the accuracy when 24 (14+5+5) channels are pre-

cisely selected based on the result of the dynamic selec-

tion in Figure 5a. In comparison, DCT-24T and DCT-24S

show the accuracy when a total of 24 channels for Y, Cb,

Cr components are close to upper-left triangles and squares,

respectively. The variation of the top-1 accuracy is almost

negligible and all of them outperform a baseline ResNet-

50 by roughly 1.4%. This demonstrates that the benefit of

the proposed frequency-domain learning can be applied to

many tasks as long as a majority of low-frequency chan-

nels are selected. Note the input data size is only a half of

the baseline ResNet-50. Since DCT-24S provides a slightly

better result, the remaining static selection are based on pat-

terns that are close to upper-left squares (some lower right

channels may be missing).

Similarly, we choose the top (32, 8, 8) channels for DCT-

48S/T and top (44, 10, 10) channels for DCT-64S/T. The re-

sults on the ImageNet dataset are shown in Table 1 along

with selecting all 192 frequency channels. In particular,

compared with the baseline ResNet-50, the top-1 accuracy

is improved by 1.4% using all frequency channels. One

should also note that the accuracy is dropped when the in-

puts are transformed from the RGB to the YCbCr color

space (both in the spatial domain) by roughly 0.5%, and

the improvement of our method (in the frequency domain)

over the YCbCr case is even larger.

Another interesting observation is that the model trained

with a subset of channels may perform better than the model

trained with all the 192 channels. Such a counter-intuitive

observation implies that a small number (e.g., 24) of low-

frequency channels are sufficient to capture useful features

and additional frequency components may introduce noise.

Similar experiments are performed using the Mo-

bileNetV2 as the baseline CNN model and the results are

shown in Table 2. Note that DCT-12S and DCT-6S select

12 and 6 frequency channels, and the input data size is the

same and a half of the baseline MobileNetV2, respectively.

The top-1 accuracy of DCT-12S and DCT-6S is improved

by 0.454% and 0.074%, respectively. The top-1 accuracy

is improved by 0.662% and 0.580% by selecting 32 and 24
frequency channels, respectively.

4.3. Experiment Settings on Instance Segmentation

We train our model on the COCO train2017 split con-

taining about 118k images and evaluate on the val2017

split containing 5k images. We evaluate the bounding

box (bbox) average precision (AP) for the object detec-

tion task and the mask AP for the instance segmentation

task. Based on the Mask R-CNN [39], our model con-

sists of a frequency-domain ResNet-50 model as introduced

in Section 4.1 and a feature pyramid network [40] as the

backbone. The frequency-domain ResNet-50 model is fine-

tuned with the bounding-box recognition head and the mask

prediction head. Input images are resized to a maximum
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Table 3: Bbox AP results of Mask R-CNN using different backbones on COCO 2017 validation set. The baseline Mask R-

CNN uses a ResNet-50-FPN as the backbone. The DCT method uses the frequency-domain ResNet-50-FPN as the backbone.

Backbone #Channels Size Per Channel
bbox

AP AP@0.5 AP@0.75 APS APM APL

ResNet-50-FPN (RGB) 3 800⇥1333 37.3 59.0 40.2 21.9 40.9 48.1

DCT-24S (ours) 24 200⇥334 37.7 59.2 40.9 21.7 41.4 49.1

DCT-48S (ours) 48 200⇥334 38.1 59.5 41.2 22.0 41.3 49.8

DCT-64S (ours) 64 200⇥334 38.1 59.6 41.1 22.5 41.6 49.7

Table 4: Mask AP results of Mask R-CNN using different backbones on COCO 2017 validation set.

Backbone #Channels Size Per Channel
mask

AP AP@0.5 AP@0.75 APS APM APL

ResNet-50-FPN (RGB) 3 800⇥1333 34.2 55.9 36.2 15.8 36.9 50.1

DCT-24S (ours) 24 200⇥334 34.6 56.1 36.9 16.1 37.4 50.7

DCT-48S (ours) 48 200⇥334 35.0 56.6 37.2 16.3 37.5 52.3

DCT-64S (ours) 64 200⇥334 35.0 56.5 37.4 16.9 37.6 51.6

scale of 1600⇥2666 without changing the aspect ratio. The

corresponding DCT coefficients have a maximum size of

200 ⇥ 334, which are fed into the ResNet-50-FPN [40] for

feature extraction.

We train our networks for 20 epochs with an initial learn-

ing rate of 0.0025, which is decreased by 10⇥ after 16 and

19 epochs. The rest of the configurations follow those of

MMDetection [41].

In Table 3 and Table 4, we report the AP metric that av-

erages APs across IoU thresholds from 0.5 to 0.95 with an

interval of 0.05. Both the bbox AP and the mask AP are

evaluated. For the mask AP, we also report AP@0.5 and

AP@0.75 at the IoU threshold of 0.5 and 0.75 respectively,

as well as APS , APM , and APL at different scales.

4.4. Experiment Results on Instance Segmentation

We train our Mask R-CNN model using the 192-channel

inputs in the frequency domain for instance segmentation.

The gate module for dynamic channel selection is trained

together with the entire Mask R-CNN. Figure 5b shows the

heat maps for the dynamic selection.

We further train our models using only the top 24, 48,

and 64 high-probability frequency channels. The bbox and

mask AP of our method in different cases is reported in Ta-

ble 3 and Table 4, respectively. The experiment results show

that our method outperforms the RGB-based Mask R-CNN

baseline with both an equal (DCT-48S) or smaller (DCT-

24S) input data size. Specifically, the 24-channel model

(DCT-24S) achieves an improvement of 0.4 in both bbox

AP and mask AP with a half of the input data size compared

to the RGB-based Mask R-CNN baseline.

Figure 6 visually illustrates the segmentation results of

the Mask R-CNN model trained and performing inference

in the frequency domain.

Figure 6: Examples of instance segmentation results on the

COCO dataset.

5. Conclusion

In this paper, we propose a method of learning in the

frequency domain and demonstrate its generality and supe-

riority for a variety of tasks, including classification, detec-

tion, and segmentation. Our method requires little modi-

fication to the existing CNN models that take RGB input

thus can be generally applied to existing network training

and inference methods. We show that learning in the fre-

quency domain better preserves image information in the

pre-processing stage than the conventional spatial down-

sampling approach and consequently achieves improved ac-

curacy. We propose a learning-based dynamic channel se-

lection method and empirically show that the CNN mod-

els are more sensitive to low-frequency channels than high-

frequency channels. Experiment results show that one can

prune up to 87.5% of the frequency channels using the pro-

posed channel selection method with no or little accuracy

degradation in the classification, object detection, and in-

stance segmentation tasks.
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Supplementary Material for
Learning in the Frequency Domain

This document supplements our paper entitled Learning
in the Frequency Domain by providing further quantitative
and qualitative insights of the results.

A. Instructions to Reproduce the Experiments

We have provided the source code to reproduce the
experiments in the paper. The code is based on Py-
Torch and is available at https://github.com/
calmevtime1990/supp. There are two folders in the
repo named “classification” 1 and “segmentation” 2. The
classification folder contains all the necessary code and in-
structions to reproduce our work using the pretrained mod-
els on the image classification task. The segmentation
folder contains all the necessary code and instructions on
the object detection and instance segmentation task.

B. Additional Instance Segmentation Results

More instance segmentation examples are shown in Fig-
ure 7.

C. Object Detection Results on Faster R-CNN

In addition to the Mask R-CNN model provided in the
paper, we train our model for object detection on the COCO
train2017 split and evaluate on the val2017 split using
the Faster R-CNN [1] model. Our model consists of a
frequency-domain ResNet-50 model (introduced in Section
4.1 in the main paper) and a feature pyramid network [2]
as the backbone. The frequency-domain ResNet-50 model
is fine-tuned with the classification head and bounding box
regression head. Input images are resized to a maximum
scale of1600×2666 without changing the aspect ratio. The
corresponding DCT coefficients have a maximum size of
200×334, which are fed into the ResNet-50-FPN for fea-
ture extraction. The rest of the configurations follow those
of MMDetection [3].

∗Work partially done during an internship at Alibaba.
1https://github.com/calmevtime1990/supp/tree/

master/classification
2https://github.com/calmevtime1990/supp/tree/

master/segmentation

In Table 5, we report the results on the object detection
task using the frequency domain Faster R-CNN. The pro-
posed method achieves a 0.8% AP improvement compared
to the baseline Faster R-CNN on the COCO dataset.
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Figure 7: Examples of instance segmentation results on the COCO dataset.

Table 5: Bbox AP results of Faster R-CNN using different backbones on COCO 2017 validation set. The baseline Mask R-
CNN use a ResNet-50-FPN as the backbone. The DCT method uses the frequency-domain ResNet-50-FPN as the backbone.

Backbone #Channels Size Per Channel bbox
AP AP@0.5 AP@0.75 APS APM APL

ResNet-50-FPN (RGB) 3 800×1333 36.4 58.4 39.1 21.5 40.0 46.6
DCT-24 (ours) 24 200×334 37.2 58.8 39.9 21.9 40.7 48.9
DCT-48 (ours) 48 200×334 37.1 58.6 40.2 21.7 40.9 48.8
DCT-64 (ours) 64 200×334 37.2 58.5 40.6 21.9 40.9 48.3
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