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ABSTRACT

This paper proposes an automated data-driven integrated
circuit segmentation approach of scan electron microscopy
(SEM) images inspired by state-of-the-art CNN-based image
perception methods. Based on the requirements derived from
real industry applications, we take wire segmentation and via
detection algorithms to generate integrated circuit segmen-
tation maps from SEMs in our approach. On SEM images
collected in the industrial applications, our method achieves
an average of 50.71 on Electrically Significant Difference
(ESD) in the wire segmentation task and 99.05% F1 score
in the via detection task, which achieves about 85% and 8%
improvements over the reference method, respectively.

Index Terms— image segmentation, deep learning, scan
electron microscopy images, integrated circuit segmentation

1. INTRODUCTION

Integrated circuit segmentation (ICS) that extracts circuits
from scan electron microscopy (SEM) images is a criti-
cal task in semiconductor analysis. The limited number
of existing public ICS approaches require much human in-
tervention to generate accurate segmentation results [1, 2].
Such human interventions are usually undesired and even
unacceptable for large-scale industrial purposes, significantly
limiting real-industrial applications. More specifically, [2]
requires manually tuning model parameters and separation
thresholds in the segmentation process based on the visual
appearance of the segmentation results. Ronald et al. [1]
propose a histogram-based ICS approach that uses decision
boundaries derived from the peaks in the intensity histogram
to perform wire segmentation. However, due to the high
variation of intensity values in our real-industry collected
SEM images, this approach fails to generate highly accurate
segmentation results. Additionally, [1, 2] focus on wire seg-
mentation without exporting the location information of vias
(i.e., electrical connections between copper layers in ICs)
which are highly demanded in semiconductor analysis. The
deep learning-based data-driven approach [3, 4, 5] suffers
from high segmentation error rates caused by random and
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intensive noise and contamination on SEM images we cap-
tured in the industry. Such errors in the segmentation results
require laborious manual corrections by experts afterward.

In this paper, we propose a data-driven ICS approach
that automatically generates circuit segmentation results from
SEM images inspired by the state-of-the-art CNN-based
image perception methods in other domains, e.g., medical
microscopy imaging [6, 7, 8]. The proposed approach runs
in three steps: pre-processing, image segmentation, and post-
processing (see Figure 1). The pre-processing step runs SEM
image patch generation and on-the-fly training data augmen-
tation. Then, we perform CNN-based wire segmentation and
via detection separately to derive wire and via integrated seg-
mentation maps in image segmentation step [9, 10, 6], where
CNN networks are modified to fit our domain-specific SEM
images. In terms of post-processing, we propose a pixel-wise
refiner on the coarse segmentation maps to reduce electrical
shorts and opens caused by artifacts containing small areas
of isolated pixels. We also merge the vias detected inside
the overlapping area between patches and drop the vias near
patch edges. On SEM images of 7 different types of ICs (e.g.,
microprocessor and power management ICs) we collected in
industrial applications, our approach achieves an average of
50.71 on Electrically Significant Difference (ESD) [2] in the
wire segmentation task and 99.05% F1 score in the via detec-
tion task, which achieves about 85% and 8% improvements
over the reference method [3], respectively.

2. METHODOLOGY

Our proposed approach consists of three major steps, as
shown in Figure 1: pre-processing, image segmentation, and
post-processing.

2.1. Pre-processing

Since our SEM images have much higher resolution (i.e.,
8192× 8192) than input sizes (e.g., 256× 256/512× 512) of
typical CNN-based image segmentation approaches, we per-
form image segmentation on smaller image patches instead
of full-sized images. As smaller image patches inevitably
lose the global information beneficial for image segmenta-
tion, such an approach could lead to a lower segmentation
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Fig. 1: The pipeline of our proposed approach

accuracy[6, 11]. However, we observe that most SEM images
contain highly repetitive patterns at areas of wire/via in each
image; the intensity difference between the background and
wire areas are significant, which implies that the texture in-
formation of a local patch is sufficient for wire segmentation.
We also observe that vias might be incomplete in an SEM
patch due to the patch-cutting operation when vias lie exactly
at the edges of such a patch. Therefore, we generate patches
with a 100-pixel overlapping area for each pair of adjacent
patches to ensure every via can be entirely shown at least in
one image patch.

We utilize standard data augmentation methods, includ-
ing vertical and horizontal flip, random intensity augmenta-
tion, and n× 90 degree rotation to enlarge the limited labeled
training data. We do not utilize random rotation for data aug-
mentation in our approach since wires and vias are always
vertical or horizontal in SEM images. We randomly generate
a uniformly distributed number between −5 and 5 as a jitter
for each unsigned 8-bit pixel. The random intensity augmen-
tation introduces minor noises to training samples which can
improve the robustness of the trained model to noises.

2.2. Image Segmentation

2.2.1. Wire Segmentation

As the high-level semantic features, i.e., the information car-
ried by low-resolution feature maps, are not critical for our
SEM image segmentation, we avoid the unnecessary feature
map downsampling in the original HRNet[6]. We modify the
stride of the second CNN layer to 1 so that our network starts
extracting visual features from feature maps with 1

2 of the
original input size instead of 1

4 . Then, we remove the fourth
parallel CNN stage of the original HRNet[6]. Consequently,
the modified network extracts and merge multi-resolution vi-
sual features at three different resolutions, which are 1

2 , 1
4 , and

1
8 of the original input size without the 1

16 ones in the origi-
nal HRNet. The output feature maps with the largest size of
the last stage are upsampled to the same size as the original

SEM patch and fed into the final classification layer. The fi-
nal classification layer is a CNN layer with kernel = 1 and
stride = 1. The classification layer outputs a binary seg-
mentation result of the input SEM patch. The loss function
for our wire segmentation model training is pixel-level binary
class cross-entropy, which is

Lwire(ygt, ypred) = −(ygt log(ypred)+(1−ygt) log(1−ypred)),
(1)

where ygt is the ground truth label and ypred is the predicted
label.

2.2.2. Via Detection

We utilize the Faster R-CNN[10] as our fundamental algo-
rithm for via detection. We replace the ROI pooling layer in
the original Faster R-CNN with the ROI align layer that sam-
ples the proposed region from feature maps more accurately
using interpolation, which results in an about 8% detection
performance improvement in the natural image object detec-
tion. We use HRNet[6] and ResNet[12] as visual feature ex-
traction networks separately to provide multi-resolution fea-
ture maps for the detection head. The loss function of our
via detection network is Lvia = Lrpn + Lbox, where Lrpn

and Lbox are the loss of the region proposal network and the
bounding box regression loss in Faster R-CNN[10], respec-
tively.

2.3. Post-processing

2.3.1. Neighbor Pixel Refiner for Wire Segmentation

As shown in Figure 2, we notice some ESDs are caused by
isolated wire pixels. Such ESDs can be eliminated by merging
the isolated pixels into nearby wires or dropping the isolated
pixels. Hence, we propose a wire segmentation refiner, where
each pixel is re-classified according to coarse segmentation
labels of its neighbor pixels. This refiner is implemented us-
ing GPU-accelerated fix-weight convolution operations. For
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Fig. 2: Visual examples of ESDs caused by isolated areas
of pixels. FP wires are pixels labeled incorrectly as wires in
predictions. The ESD A and B are caused by isolated pixels
in the red boxes.

a pixel P , the convolutional kernel K selects k2−1 neighbors
around P . Elements of K are initialized as 1 except the center
element. As the segmentation results contain binary classes,
i.e., ”1” is wire and ”0” is background, the convolution output
c equals the number of predicted wire pixels around P . If c
is greater than the threshold t, we re-classify P as wire pixel
and vice versa.

2.3.2. Merge-Overlapped Predictions for Via Detection

The output of the via detection is a list of predicted boxes
and the corresponding confidence score for each prediction.
Note only predictions with a confidence score greater than
0.6 are kept. We eliminate predicted vias totally inside a 50-
pixel border area of each patch. Correct vias among these
dropped predictions can still be detected in other neighbor
patches where they are entirely presented, but the border area
can effectively reduce the number of false-positive cases. We
match the overlapped predictions in the neighbor patches by
computing Intersection over Union (IoU) between any pair of
predicted boxes in the results. If the IoU between two predic-
tions is greater than 0.3, we view these two predictions as one
predicted via and keep the one with higher confidence scores.

3. EXPERIMENTS

3.1. Experiment Setup

Our dataset contains SEM images of the microprocessor, Ra-
dio Frequency (RF) transceiver, power management, flash
memory, SoC, and so on with 2.92 nm average pixel size
and 22.96 µm average field size, respectively. The collecting
dwelling time is 0.2 µs/pixel, and our scanning is 50× faster
than data collected by [1] so that our SEM images contain
more noise. We train HRNet[6] for 100 epochs with 21 high-
resolution SEM images for wire segmentation. We use the
Adam optimization algorithm with an initial learning rate of

Table 1: Wire segmentation results. Our approach outper-
forms the reference method by large margins.

Models Avg ACC Avg IoU Avg ESD
FCN with VGG16[3] 94.40% 89.32% 329.86

HRNet-3 95.75% 91.86% 50.71
HRNet-4 95.71% 91.78% 69.77

Table 2: The performance improvements contributed by the
neighbor pixel refiner. The neighbor pixel refiner shows con-
sistent and significant improvements across all the parameter
setups.

Models k t Refiner RRw/o w/

HRNet-3
7 24

66.38
55.90 15.79%

7 36 50.71 23.61%
9 40 55.71 16.07%

HRNet-4 7 24 82.67 69.77 15.60%
9 40 69.86 15.50%

0.001 and a weight decay of 10−8. We decay the learning
rate by a factor of 0.1 if the loss on the validation set stops re-
ducing in 2 epochs. For via detection, we train the networks,
i.e., Faster R-CNN [10] with HRNet[6] and ResNet[12] sepa-
rately, for 150 epochs with 100 high-resolution SEM images.
We use the stochastic gradient descent (SGD) optimizer with
an initial learning rate of 0.001, which is decayed by a factor
of 10 every 30 epochs, a momentum of 0.9, and a weight
decay of 5× 10−4.

3.2. Wire Segmentation

We evaluate the effectiveness of our approach in wire seg-
mentation using pixel-level classification accuracy and IoU,
and the improved ESD evaluation method proposed by [2].
ESDs are shorts or opens that do not exist in ground truth
circuits and result in electrical errors, which lower value in-
dicates better segmentation performance. However, note that
wrong classified pixels may not cause shorts or opens in ex-
tracted circuits.

We present the quantitative results on 21 high-resolution
results in Table 1. Compared to HRNet-4, which has the same
number of parallel CNN stages as the original HRNet[6], our
modified HRNet-3 achieves higher average accuracy and
average IoU, which indicates the low-level texture features
are enough for wire segmentation. Additionally, the more
obvious average ESD gap between HRNet-3 and HRNet-4
indicates that some misclassified pixels do not cause shorts
or opens in the extracted circuit segmentation. Compared
with the reference method, our method reduces 85% of ESDs
and improves the accuracy and IoU by 1.35% and 2.54%,
respectively. Parameters k and t in Tabel 2 are defined in
Section2.3.1 and reduced rate (RR) is the percentage of the



ESDs reduced by the proposed refiner. When we apply a
refiner with k = 7 and t = 0.5, we can reduce at least
15.6% ESDs in the coarse segmentation results generated by
HRNet-3 and HRNet-4, which indicates that our refiner can
be applied to coarse segmentation results automatically with-
out hand-tuning the kernel size or threshold. Figure 3 shows
the qualitative comparison of our wire segmentation method
with the reference method[3].
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Fig. 3: Visual examples of wire segmentation results. Our
approach has fewer ESDs than the reference method.

Table 3: Via detection results. Our approach outperforms the
reference method by large margins. P is precision and R is
recall. FR-CNN means Faster R-CNN.

Models P R F1
FCN w/ VGG16[3] 93.44% 89.35% 91.35%

FR-CNN w/ HRNet-4 99.72% 98.38% 99.05%
FR-CNN w/ HRNet-5 99.77% 98.23% 98.99%
FR-CNN w/ ResNet 98.88% 98.56% 98.72%

Table 4: Via detection results of Faster R-CNN with HRNet-4
on overlapping or non-overlapping patches. These results in-
dicate that higher F1 can be achieved by utilizing overlapping
patches(OP) during inference.

Models Precision Recall F1
w/ OP 99.77% 98.34% 99.05%
w/o OP 94.40% 94.62% 94.51%

3.3. Via Detection

We use the precision to evaluate the error rate in predictions
and recall to evaluate the via retrival rate. F1 score[13] com-
bins precision and recall and presents the overall performance

Fig. 4: Visual examples of via detection results. Red boxes
are the detection results of [3]. Green boxes are predictions
of our method. Our approach detects more vias correctly than
the reference method not only for the locations but also for
the size.

of methods. If a predicted box has IoU greater than 0.3 with
any ground truth box, we refer to the prediction as a true pos-
itive case. Note that each ground truth box can only have
one matched predicted box, which is the predicted box that
has the largest IoU. A predicted box without matched ground
truth box is a false positive case, and a ground truth box with-
out matched predicted box is a false negative case.

We present evaluation results on 20 high-resolution SEM
images in Table 3. Compared to the reference method[3],
our approach achieves an 8.4%, 6.72%, and 10.11% im-
provement on F1 score, precision, and recall, respectively.
Faster R-CNN[10] with HRNet[6] as backbone outperforms
the original Faster R-CNN which utilizes the ResNet[12] as
CNN backbone for visual feature extraction with an 0.33%
F1 score improvement. Furthermore, We explore the impact
of generating overlapping patches for via detection inference.
The model inference with overlapping patches effectively
achieves a 4.54% F1 score improvement, indicating that
removing the predictions in border area can reduce the num-
ber of incorrectly detected via-like objects, and generating
patches with an overlapping area makes the model inference
more robust. We present the qualitative visualization result
comparison of via detection in Figure 4 . Note that the ref-
erence method [3] generates vias with irregular shapes and
sizes, so we replace the vias with rectangles. In contrast, our
via detection method generates vias with a regular size closer
to the real vias in the SEM images.

4. CONCLUSION

This paper proposes an automatic data-driven approach for
ICS, which is able to generate IC segmentataion maps and lo-
cations of vias in an end-to-end manner without any human
intervention. Our approach achieves an average of 50.71 on
ESD in wire segmentation and 99.05% F1 score in via detec-
tion on SEM images collected in real industrial applications,
which outperforms the reference method[3] by 85% on ESD
and 8% on F1 score, respectively.
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