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ABSTRACT

Due to the complicated nanoscale structures of current inte-
grated circuits(IC) builds and low error tolerance of IC im-
age segmentation tasks, most existing automated IC image
segmentation approaches require human experts for visual in-
spection to ensure correctness, which is one of the major bot-
tlenecks in large-scale industrial applications. In this paper,
we present the first data-driven automatic error detection ap-
proach that targets two types of IC segmentation errors: wire
and via errors. On an IC image dataset collected from real in-
dustry, we demonstrate that, by adapting existing CNN-based
approaches of image classification and image translation with
additional pre-processing and post-processing techniques, we
are able to achieve recall/precision of 0.92/0.93 in wire error
detection and 0.96/0.90 in via error detection, respectively.

Index Terms— error detection, reverse engineering, im-
age segmentation, image classification, image translation

1. INTRODUCTION

Ever-developing integrated circuit (IC) manufacturing tech-
nologies have led to the ever-increasing complexity of IC
structures built at the nanoscale. Such high complexity can
put normal users and IC designers at risk by providing op-
portunities for adversaries to hide malicious or IP-protected
designs within the IC [1l]. Reverse engineering is the best
or even the only approach to date that can help address this
problem [1]]. In a nutshell, reverse engineering operates by
repeatedly imaging and physically removing the topmost
layer of an IC chip to reveal all inner 3D structures for
analysis. Because of the extremely small size of IC struc-
tures, scanning electron microscopy(SEM) is often used as
an imaging tool. Once SEM images are acquired, coarse IC
designs can be retrieved by segmenting SEM images into
different objects(we only target vias and wires in this work).
SEM image quality can be affected by various unexpected
factors, such as random contamination, improper exposure,
and improper layer removal, which lead to unexpected seg-
mentation errors in existing SEM image segmentation ap-
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Fig. 1. Image samples with errors caused by unexpected fac-
tors. Row 1: SEM images. Row 2: Wire segmentation results.
Column 1: Random Contamination. Column 2: Improper ex-
posure. Column 3: Improper layer removal.

proaches [12, 13, 14, 15, 16l (7, 18} 19} [10L [11], as shown in Fig. m
To correct such errors, human experts are required to visually
inspect the segmentation results. However, in the real world,
up to thousands of SEM images are generated from a single
IC chip [1], which makes manual inspection highly challeng-
ing and laborious, leading to one of the major bottlenecks in
large-scale industrial applications.

In this work, we target the problem of automatic via and
wire error detection in segmented SEM images. We formulate
the wire error detection and via error detection as image clas-
sification and image translation problems, respectively. By
adapting existing related approaches with additional image
pre-processing and post-processing techniques, we achieve
high performance in both via and wire error detection prob-
lems on an SEM image dataset collect from the real industry.

Our contributions are summarized as follows:

1. This is the first work to identify and address the prob-
lem of automatic error detection in integrated circuit segmen-
tation. Our approach achieves prominent performance on a
real industrial dataset, which significantly unblocks a major
bottleneck in reverse engineering and implies the potentially
broad applicability of this approach.

2. Through the validation of this approach, we draw an
insight that the error detection problem can be formulated
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Fig. 2. Pipeline of the proposed approach. rSEM: reconstructed SEM image. oSEM: original SEM image. Red bounding

boxes: “open” of wires or “miss” vias. Blue bounding boxes:

as image classification and image translation problems sepa-
rately to address. This insight reveals a pathway toward more
sophisticated solutions to this problem.

3. This work demonstrates the effectiveness of CNN in
error detection of segmented SEM images with the necessary
image pre-processing and post-processing techniques, which
inspires further research on designing CNN-based solutions
to the problem.

2. METHODOLOGY

2.1. Datasets and Evaluation Metrics

Datasets. We collect 39 SEM images of various hardware:
microprocessor, radio frequency(RF) transceiver, power man-
agement, flash memory, SoC, etc., with a collecting dwelling
time of 0.2 us/pixel. The average pixel and field sizes are
2.92nm and 22.96 pum, respectively. For brevity, this SEM
image set is denoted SO. Each image in SO is grayscale with
a size of 8192x8192, which is too high to be fed into com-
mon CNNs. Thus, we choose to process images at the patch
level (256x256) first and then merge the patch-level results
to form full image results. There are two types of objects
to be segmented: vias and wires. Vias are electrical connec-
tions between the copper layers in ICs, which are often im-
aged with the highest pixel intensity and are shown as small
rounded squares. Wires are imaged with lower pixel inten-
sity than vias but higher pixel intensity than backgrounds and
are shown as long strips(Fig. [2]). We collect four wire seg-
mentation sets(denoted as WO, W1, W2, and W3) and two
via segmentation sets(denoted as VO and V1) corresponding
to SO. The WO set is generated by [12] with manual correc-
tions. W1, W2, and W3 sets are generated by [4] using three

”short” of wires or “extra” vias

different settings. VO and V1 sets are generated by [12] and
[4], respectively.

Evaluation metrics. In the context of SEM image seg-
mentation of IC, if and only if the segmentation differences
that cause errors in the connectivity of IC are defined as seg-
mentation errors. More precisely, for wires, only an “open”
or a “short” are errors(Fig. 2}). For vias, only a “miss” or an
“extra” are errors(Fig. 2}). To evaluate the error detection per-
formance of our approach, we use the following metrics: for
wire segmentation errors, given a wire error segmentation re-
sult EW and the corresponding ground truth segmentation re-
sult GW, we denote each patch of the image as either ”correct”
or “error” based on whether there is an electric-significant-
differences(ESD) [12]in the patch. The wire error detection
performance is quantified based on the number of detected
error patches. For via segmentation errors, given a via error
segmentation result EV and the corresponding ground truth
segmentation result GV, we first extract all isolated regions
from both EV and GV using [13]. Subsequently, each re-
gion from the EV that overlaps with a region from the GV
is treated as a correctly segmented via. Other regions from
either EV or GV that have no overlapping regions from GV
or EV are treated as errors(corresponding to extra vias and
miss vias, respectively). The via error detection performance
is quantified by the number of detected via errors.

2.2. Wire Error Detection

We formulate the wire error detection problem as an image
classification problem. A CNN-based binary image classifier
slides over the pre-processed wire segmentation images to de-
termine whether each image patch has errors.
Pre-processing. Because the input patch size(256x256) is



Fig. 3. For a given pixel(green), the horizontal and vertical

extension values are defined as the length of blue and red
lines, respectively.

significantly smaller than the original image size(8192x8192),
we compose novel features to implicitly encode global infor-
mation into inputs. Specifically, we first calculate the hori-
zontal and vertical extension values of each pixel(as defined
in Fig. [3), respectively, in a full-size wire segmentation im-
age. Then the values are normalized into the [0, 255] range
to form an H feature and a V feature image, respectively.
The original wire segmentation image is stacked with V and
H features to form an RGB image as the input of the image
classifier, as shown in Fig

Training an image classifier. To compose a training set,
we take the WO set as the ground truth and randomly sample
256x256 image patches from W1, W2, and W3 as training
samples. Each image patch is labeled as either positive or neg-
ative based on the presence of an error. We use ResNet [[14]]
as the image classifier. The FC layer that generates the final
output is modified to generate a binary output. The training
strategy from [[15] is used to train the network. Because the
training set is highly unbalanced(positive samples are only
3%), we used a weighted cross-entropy loss whose weights
for positive and negative samples are defined as Pf ~ and
H_LN where P and N are the numbers of positive and nega-
tive samples, respectively.

Post-processing. In the inference stage, for each 256x256
patch, the direct output of the image classifier is a two-
element vector denoted as [p,n|, where a positive detection
is made when p > n. We apply a threshold over outputs of
multiple overlapping patches to localize errors into smaller
areas. The more positive detections are made, the more likely
there is an error in the overlapping area. It should be noted
that this post-processing step is only required to localize wire
errors more precisely. To detect whether a given 256x256
patch contains errors, using the direct output of the image
classifier is sufficient.

2.3. Via Error Detection

We formulate the via error detection as a one-to-one image
translation problem. Pix2pix [16] is used as the image trans-
lation method. Given a pair of wire and via segmentation im-
age W and V and corresponding original SEM image(oSEM),
W and V are first encoded into one image and then fed into
the pix2pix model to be translated into a reconstructed SEM
image(rSEM). Finally, errors are detected by processing the
differences between rSEM and oSEM, as shown in Fig. @

Note that W is assumed to contain no error.

Pre-processing. We observed that the pixel values of the
via, wire, and background are relatively static within the same
SEM image but highly dynamic across different SEM images.
Thus we dynamically encode via and wire segmentation im-
ages as input to pix2pix model with respect to each SEM im-
age. We first estimate three representative pixel values for the
via, wire, and background, denoted as v, w, and b. v, w, and b
are the 90th, median, and 10th percentiles of the via, wire, and
background pixel values, respectively. The pixels are isolated
from oSEM according to via and wire segmentation images
V and W.

Training a pix2pix model. In our experiments, WO is
used as the wire segmentation set. We compose a training
set consisting of 39936 image patches(1024 patches per full-
sized image) that were randomly sampled from both VO and
V1. The training strategy is adopted from [17]]. Most of the
training settings remain consistent with those of the original
work. The differences are as follows:1. We set the number
of input and output channels to one. 2. All the data augmen-
tations are disabled. 3. The total number of training epochs
are set to ten. In the last five epochs, the learning rate decays
linearly.

Post-processing. We first calculate two differences be-
tween oSEM and rSEM: D1 = rSEM — oSEM and D2 =
oSEM — rSEM. The negative values of D1 and D2 are
set to zero. D1 and D2 are used for detecting extra ’vias”
and “miss” vias, respectively. We transform the positive pix-
els in D1 and D2 into isolated regions using [13]. For each
region, we first measure the following two values:1. Size of
the bounding box covering region. 2. Average pixel values of
nonzero pixels within the region. By setting proper upper and
lower thresholds for these values, we can filter out candidate
vias. Finally, the remaining regions in D1/D2 are marked as
extra/miss vias when they overlap or do not overlap with any
of the vias in oSEM.

3. EXPERIMENTS

Wire error detection. We compose two training sets of
different sizes, denoted as “small” and “large. “small” set
consists of 229,049 samples with 6883 positive samples.
’large” set consists of 1,030,699 training samples with 27833
positive samples. The testing set consists of regularly sam-
pled nonoverlapping image patches from W1, W2, and W3,
including 99956 samples with 2437 positive samples. We
trained six models corresponding to different input image
encoding, network structures, training set sizes, and network
structures. The experimental results are listed in Table[T]

The highest error detection performance is a recall/precision
of 0.92/0.93 with ResNet-18 trained on the “large” set. The
input image is encoded with the wire segmentation result, V
and H features. These results indicate that our approach can
effectively detect wire segmentation errors without human



Network | Input | Dataset | Strategy | Recall | Precision

ResNetl8 | W | small | '™ | 083 0.77
scratch

ResNetl8 | VH | small | '™ | 083 0.64
scratch

ResNet18 | WVH | small | '™ | 084 0.79
scratch

ResNet34 | WVH | small | *°" | 082 0.76
scratch

ResNet18 | WVH | large | T°M | 002 0.93
scratch

ResNetl8 | WVH | small Tuning 0.61 0.30

Table 1. The wire error detection performance of various
trained models. W: encodes wire segmentation only. VH:
encodes only the V and H features. WVH: encodes the wire
segmentation with V and H features. From scratch: Training
the network from scratch. Tuning: use a ResNet18 pre-trained
on ImageNet and only tune the last FC layer in training.

Fig. 4. The statistics of correct vias and error vias in the test-
ing set.
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Compared with other trained models in Table [I] we con-
clude the followings:1. A deeper network structure does not
necessarily lead to higher detection performance(ResNetl8
vs. ResNet34, row 3 and row 4). This implies that the wire
error detection task relies more on low-level local informa-
tion in the images, which can be extracted by shallower neu-
ral networks. 2. Using wire segmentation images together
with V and H features improves the detection performance,
while using only V and H features is not sufficient(row 1, row
2, and row 3). 3. A larger training set effectively improves
detection performance(row 3 and row 5). 4. Pre-training on
ImageNet is not necessary(row 3 and row 6), which further
implies that wire error detection relies more on low-level in-
formation. Thus, a network trained for high-level tasks does
not perform well.

Via error detection. We alternately take VO and V1 as
the ground truth set and the error set for testing. Via images
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Fig. 5. The via error detection results. Wrongly detected er-
rors are either actual errors not detected(false negative results)
or no-existing errors detected(false positive results)

with no errors are excluded. The statistics of correct vias and
error vias in the testing set are shown in Fig. [d The number
of correct vias and error vias varies dramatically for different
images. The average ratio of via errors is 0.09. The experi-
mental results of error detection are shown in Fig. [3}

We achieve an average recall/precision of 0.96/0.90 on the
testing set, which shows that our approach can effectively de-
tect via errors. We further examine the only outlier result in
Fig. 5] which has 956 wrong detections and is significantly
higher than the rest of the results. It turns out that most of
the wrong detections in this image are false positives caused
by the low contrast between the vias and wires. Because of
the low contrast, the estimated v and w values tend to be very
close, which results in filtering failure. Although such sam-
ples are rare in our dataset, this result reveals a limitation of
our approach. We will address the problem of such cases in
future work.

4. CONCLUSION

In this work, we propose an automatic error detection ap-
proach for segmented SEM images of IC circuits. We first for-
mulate the wire and via error detection problems into image
classification and image translation problems, respectively.
By adapting existing approaches in these two domains with
the necessary image pre-processing and post-processing tech-
niques, we achieve an average recall/precision of 0.92/0.93
in wire error detection and 0.96/0.90 in via error detection,
respectively. Our approach significantly unblocks one of the
major bottlenecks for automatic SEM image segmentation ap-
proaches. The evaluation is conducted on a real industrial
dataset, which implies the broad applicability of our approach
to real-world applications.
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