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ABSTRACT

Motivated by the increasing application of low-resolution Li-
DAR, we target the problem of low-resolution LiDAR-camera
calibration in this work. The main challenges are two-fold:
sparsity and noise in point clouds. To address the problem,
we propose to apply depth interpolation to increase the point
density and supervised contrastive learning to learn noise-
resistant features. The experiments on RELLIS-3D demon-
strate that our approach achieves an average mean absolute
rotation/translation errors of 0.15cm/0.33◦ on 32-channel Li-
DAR point cloud data, which significantly outperforms all
reference methods.

Index Terms— low-resolution point cloud, LiDAR-
camera calibration, supervised contrastive learning, image
interpolation

1. INTRODUCTION

Driven by the development of LiDAR technology, the ap-
plication scenarios of low-resolution LiDAR devices have
expanded significantly in recent years, such as autonomous
driving [1], geoscience [2], remote sensing [3], and mobile
robotics [4]. To acquire an accurate and informative per-
ception of scanned targets or environments, LiDAR devices
are often fused with cameras to utilize the rich information
in images. The basis of LiDAR-camera fusion is extrinsic
calibration, that is, estimating a relatively rigid body trans-
formation from LiDAR coordinates to camera coordinates,
which has been long studied. Conventional calibration meth-
ods [5, 6, 7, 8, 9, 10] are mostly based on explicit targets in
a scene, handcrafted features, or labels of data to build corre-
spondences between point clouds and images; thus, they are
often limited by laborious human interventions and/or applied
environments. Recognizing these limitations, recently, deep-
learning-based calibration approaches [11, 12, 13, 14, 15]
are proposed, which automatically learn features from sensed
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data and perform calibration in an end-to-end manner. Be-
cause feature learning depends heavily on the quality of data,
most studies lay the foundation upon highly accurate and
noiseless point clouds(Fig. 2) sensed by high-resolution Li-
DAR, and thus suffers from large performance degradation in
low-resolution LiDAR scenarios.

In this work, we use the state-of-the-art method LCC-
Net [15] as the backbone to apply two effective techniques to
enhance the performance of low-resolution LiDAR-camera
calibration. We first identify two major challenges to low-
resolution LiDAR-camera calibration: sparsity and noise, as
shown in Fig. 2. To tackle sparsity, we apply depth inter-
polation to increase the density of the point cloud, which
inevitably introduces more noise to the point cloud. Then,
to tackle the inherent and introduced noise, we apply su-
pervised contrastive loss on the backbone to learn noise-
resistant features for calibration. Extensive experiments on
32-channel point clouds of RELLIS-3D [16] demonstrate
that our approach reduces the average translation and rotation
errors of the original LCCNet by 87%(2.66cm to 0.33cm)
and 28%(0.21◦ to 0.15◦), respectively, in the miscalibration
range of 150cm and 20◦. Compared with Regnet [13] and
CalibDNN [14], the calibration errors are reduced by at least
10x times, which provides strong evidence that our approach
is highly effective in addressing the low-resolution LiDAR-
camera calibration problem.

Our contributions are summarized as follows:

1. We propose two effective techniques to enhance deep-
learning-based, automatic targetless LiDAR-camera calibra-
tion in the low-resolution LiDAR scenario. To the best of our
knowledge, this is the first work that targets the low-resolution
LiDAR-camera calibration problem.

2. We demonstrate that supervised contrastive loss can
be applied to learn noise-resistant features for LiDAR-camera
calibration.

3. Our approach achieves state-of-the-art performance
for low-resolution LiDAR-camera calibration, which sets a
strong baseline for this task.
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Fig. 1. The entire training pipeline of our approach. Given the input pair of RGB image and miscalibrated point cloud, image
features are extracted with two CNNs from the RGB image and the max-pooled depth image. Subsequently, a correlation
layer [17] constructs a cost volume from extracted image features to generate rotation features and translation features
for prediction of rotation parameters and translation parameters. Three losses are applied in training: calibration loss
minimizes the error of predicted parameters. Cloud distance loss minimizes the error of calibrated point cloud. Supervised
contrastive loss enhances the learned rotation features and translation features to be noise-resistant.

2. METHODOLOGY

We use a state-of-the-art method LCCNet as the backbone
of our approach, as shown in Fig. 1. In the inference stage,
LCCNet runs in two modes: single-stage and multi-stage. In
single-stage mode, a single model is trained for a single mis-
calibration range. In multi-stage mode, multiple models are
trained separately for different miscalibration ranges, and the
input is calibrated sequentially from higher ranges to lower
ranges with corresponding models.

We first identify two main problems for low-resolution
LiDAR-camera calibration resulting from point clouds: spar-
sity and noise. Fig. 2 shows a visual comparison of point
clouds sensed by a 32-channel LiDAR and a 64-channel Li-
DAR. Higher sparsity and more noise in low-resolution point
clouds lead to more difficulties in calibration since the RGB
images and depth images are less correlated, consequently
making the constructed cost volume less informative.

Depth interpolation. To address the sparsity problem, we
propose to apply interpolation to depth images before feature
extraction. There are a large variety of image interpolation
methods, and we choose to use max-pooling, which shows
the highest calibration accuracy in Section 3. Given a depth
image with h height and w width and output size of ĥ height
and ŵ width, the stride and kernel size are set to h/ĥ, w/ŵ

and h − (ĥ − 1) ∗ (h/ĥ), w − (ŵ − 1) ∗ w/ŵ, respectively,
following the widely used adaptive max-pooling design [18].

Supervised contrastive learning. Depth interpolation
inevitably introduces more noise to the point cloud because
a large number of fake 3d points are added. To learn noise-
resistant features, we hypothesize that learned features should
satisfy three conditions: 1. Rotation features(Fig. 1, red
block) only retain information related to rotation parameters.
2. Translation features(Fig. 1, purple block) only retain infor-
mation related to translation parameters. 3. Both rotation and
translation features do not retain data-dependent(either image
or point cloud)information to avoid over-fitting.

Following the three conditions, we propose to add super-
vised contrastive loss(SCL) [19] in addition to original cal-
ibration loss and cloud distance loss(both defined in [15]).
SCL is defined as

Lsup =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(1)

where P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the set of indices
of all positives samples distinct from i within the mini-batch,
|P (i)| is its cardinality. zi, za and zp are features of the given,
negative and positive samples, respectively. τ is a scalar tem-
perature parameter as defined in [19]. Despite its complicated
mathematical form, SCL can be implemented as a function
that takes in a batch of features and the same number of nu-
merical labels while outputting a singular loss value, i.e.,

loss = SCL([f1, · · · , fb], [l1, · · · , lb]) (2)



where fi is the feature, li is the corresponding label, and b
is the batch size, as implemented in [20]. Then in the train-
ing process, features with the same labels are pulled together
while features with different labels are pushed apart.

Composed inputs Features Labels
Image PC RO TR RO TR RO TR
I1 P1 R1 T1 Rf

1 T f
1 1 1

I1 P1 R1 T2 Rf
2 T f

2 1 2
... ... ... ... ... ... ... ...
I1 P1 R2 T1 Rf

b+1 T f
b+1 2 1

... ... ... ... ... ... ... ...
I2 P2 R1 T1 Rf

b∗b+1 T f
b∗b+1 1 1

... ... ... ... ... ... ... ...
Ib Pb Rb Tb Rf

b∗b∗b T f
b∗b∗b b b

Table 1. The composed input batch and assigned labels for
supervised contrastive learning. Original batch size: b. PC:
point cloud. RO: rotation. TR: translation. Ik: kth image
in the batch. Pk: kth point cloud. Rk: kth random rotation
parameters. Tk: kth random translation parameters. Rf

k : kth

generated rotation feature. T f
k : kth generated translation fea-

ture.

To adapt SCL for enhanced feature learning, we generate
features and labels in the following strategy for each batch:
with a batch size of b, given a batch of training samples con-
taining 4-tuples (Ik, Pk, Rk, Tk) of RGB image, point cloud,
random rotation, and random translation, 1 ≤ k ≤ b, we
first compose a new batch as inputs consisting of all possible
4-tuple combinations of Ik, Pk, Rk, Tk while always keeping
Ik and Pk paired, as shown in Table 1. As such, the new batch
size is b3. Then we assign two groups of labels to generated
rotation features Rf

k and translation features T f
k , respectively.

For rotation features, the same labels are assigned if and only
if they have the same rotation parameters. For translation fea-
tures, their labels are assigned in a similar manner to corre-
spond to translation parameters. Then, two SCL functions are
used to take in rotation and translation features and the cor-
responding labels, respectively. Through this process, three
conditions can be satisfied in the following sense: 1. Rota-
tion features Rf are pushed closer if and only if their rotation
parameters R are the same. 2. Translation features T f are
pushed closer if and only if their translation parameters T are
the same. 3. Rotation features and translation features are less
affected by solely changing the input images and point cloud
pairs without changing the calibration parameters.

3. EXPERIMENTS

We use RELLIS-3D dataset for evaluation. RELLIS-3D
contains point clouds sensed by a 32-channel LiDAR and
64-channel LiDAR in off-road environments. 32-channel
point clouds are treated as low-resolution data. The split of

the dataset follows the official split, with 7800 training sam-
ples, 2413 validation samples, and 3343 testing samples. The
miscalibration ranges are set to 150cm/20◦, 100cm/10◦,
50cm/5◦, 20cm/2◦, and 10cm/1◦ following the original pa-
per. The same for the training settings of LCCNet. The eval-
uation metrics are mean absolute translation error (x, y, z),
mean absolute rotation errors (roll, pitch, yaw), averaged
translation error (x + y + z)/3 and averaged rotation error
(roll + pitch+ yaw)/3.

Fig. 2. The visual comparison of point clouds from high-
resolution LiDAR and low-resolution LiDAR. The point
cloud is projected to the image plane and plotted as an over-
lay layer. The data is from RELLIS-3D. Left: 64-channel
LiDAR. Right: 32-channel LiDAR. Blue box: sparse region.
Red box: noisy region.

Quantify calibration performance degradation. We
first train two multi-stage LCCNet on point clouds of 32
channels and 64 channels, respectively. The experiment re-
sults are shown in Table 2. The average translation error and
rotation error increase two to four times on 32-channel data
compared with the same model trained on 64-channel data.

Channel X Y Z Roll Pitch Yaw
64 0.66 0.71 0.25 0.12 0.14 0.09
32 2.6 2.6 2.78 0.22 0.16 0.27

Table 2. Quantified performance degradation on low-
resolution(32-channel) LiDAR. Unit: cm or ◦. Network:
multi-stage LCCNet. Average degradation: 2.12cm and 0.1◦.

Depth interpolation. We compare max-pooling against
three candidate image interpolation methods: average-pooling,
linear interpolation, and nearest neighbor interpolation, as
well as the original LCCNet approach. The single-stage LC-
CNet is trained at the miscalibration range of 150cm/20◦.
The experiment results are shown in Table 3. The model
trained with max-pooling achieves the lowest calibration er-
rors among all interpolation methods. We choose to employ
max-pooling to interpolate depth images in the following
experiments. Be noted the rotation errors of all four inter-
polation methods are slightly higher than the original model,
which can be attributed to the fake points added to the depth
image through interpolation.



original linear
average
pooling

max
pooling

nearest
neighbour

TR 54.13 71.78 43.00 40.84 57.99
RO 1.02 3.95 4.00 3.34 4.23

Table 3. Comparison against various image interpolation
methods. TR: averaged translation error. RO: averaged ro-
tation error. Network: single-stage LCCNet at the miscali-
bration range of 150cm/20◦.

Supervised contrastive learning. We validate the effec-
tiveness of SCL by training single-stage model on all five
different miscalibration ranges. As experiment results in Ta-
ble 4 show, with max-pooling applied, the averaged transla-
tion and rotation errors at most ranges are significantly re-
duced compared to the original approach. In addition, with
SCL being applied, the calibration error is further reduced by
3.95cm/0.25◦ on average. The experiment results validate
our hypothesis that SCL can enhance feature learning of cali-
bration.

range original MP MPSCL
150/20 54.12/1.02 40.84/3.34 26.86/2.61
100/10 17.13/0.64 11.82/0.91 9.52/0.61

50/5 8.78/0.50 5.08/0.36 3.17/0.25
20/2 4.05/0.41 3.17/0.23 1.75/0.18
10/1 2.11/0.21 0.98/0.17 0.84/0.12

Table 4. Calibration performance comparison at different
miscalibration ranges. Original: the original model. MP:
with max-pooling applied. MPSCL: with both max-pooling
and SCL applied. Unit: cm/◦

Comparison against reference methods. We further
evaluate the performance of our approach(multi-stage model
trained at ranges of 150cm/20◦, 100cm/10◦, 50cm/5◦,
20cm/2◦, and 10cm/1◦ with max-pooling and SCL applied,
denoted as MPSCL) by comparing it against multiple ref-
erence methods. The miscalibration range for evaluation
is set to 150cm/20◦. The reference methods are original
multi-stage LCCNet, Regnet, and CalibDNN(For CalibDNN,
the range is set to 20cm/10◦ to be consistent with original
work). The experiment results are shown in Table 5. MPSCL
achieves the highest performance on all evaluation metrics.
Compared with LCCNet, the averaged translation error and
rotation error are reduced by 87%(2.66cm to 0.33cm) and
28%(0.21◦ to 0.15◦), respectively. Compared with the other
two reference methods, the calibration errors of MPSCL are
at least one order of magnitude lower, which is strong evi-
dence that MPSCL can effectively perform LiDAR-camera
calibration in low-resolution LiDAR scenarios.

Performance on subsampled point clouds. To our
knowledge, there is no public dataset for the LiDAR-camera
calibration problem with a resolution below 32 channels.

RegNet CalibDNN LCCNet MPSCL
X 58.70 10.43 2.60 0.23
Y 32.30 14.59 2.60 0.45
Z 50.73 10.77 2.78 0.30

Average 47.24 11.93 2.66 0.33
Roll 4.00 1.11 0.22 0.14
Pitch 8.23 4.15 0.16 0.13
Yaw 5.42 2.05 0.27 0.17

Average 5.88 2.44 0.21 0.15

Table 5. The performance evaluation of MPSCL against ref-
erence methods. To be noted, the miscalibration range of Cal-
ibDNN is 20cm/10◦.

To evaluate the performance of our approach in extreme
cases, we perform subsampling on point clouds to simulate
lower-resolution LiDAR scenarios. We test with three sub-
sampling rates: 2, 4, and 8. The point cloud is uniformly
subsampled. The miscalibration range is set to 150cm/20◦.
The experiment results are shown in Table 6. MPSCL again
shows significantly higher performance than all reference
methods. Even at a subsampling rate of 8, the averaged trans-
lation/rotation errors are only 4.28cm/1.24◦. Compared with
LCCNet, the average reduction in translation/rotation errors
is 19.43cm/0.03◦. Compared with RegNet and CalibDNN,
the average reduction is 51.09cm/5.25◦ and 7.34cm/0.91◦,
respectively. This is further evidence that MPSCL can
well address the LiDAR-camera calibration problem in low-
resolution LiDAR scenarios.

Rate RegNet CalibDNN LCCNet MPSCL
2 49.71/5.96 11.45/1.55 4.23/0.57 1.21/0.04
4 54.19/6.21 10.31/1.73 22.73/0.51 2.65/1.91
8 57.80/6.76 8.40/2.65 39.45/2.20 4.28/1.24

Table 6. Performance evaluation on subsampled point
clouds. To be noted, the miscalibration range of CalibDNN is
20cm/10◦.

4. CONCLUSION

In this work, we propose an effective approach for low-
resolutioin LiDAR-camera calibration. We first identify two
main challenges resulting from low-resolution data: spar-
sity and noise. Then, we take LCCNet as the backbone to
apply max pooling to interpolate depth images and super-
vised contrastive loss to tackle noises, which eventually leads
to a highly effective approach for low-resolution LiDAR-
camera calibration. The extensive experiments on RELLIS-
3D against reference methods demonstrate that our approach
can achieve superior performance in calibration, even for
extreme cases.
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