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Abstract—The proposed FSCHOL framework consists of an
FPGA kernel implementing a throughput-optimized hardware
architecture for accelerating the supernodal multifrontal algo-
rithm for sparse Cholesky factorization and a host program
implementing a novel scheduling algorithm for finding the
optimal execution order of supernodes computations for an
elimination tree on the FPGA to eliminate the need for off-
chip memory access for storing intermediate results. Moreover,
the proposed scheduling algorithm minimizes on-chip memory
requirements for buffering intermediate results by resolving
the dependency of parent nodes in an elimination tree through
temporal parallelism. Experiment results for factorizing a set
of sparse matrices in various sizes from SuiteSparse Matrix
Collection show that the proposed FSCHOL implemented on
an Intel Stratix 10 GX FPGA development board achieves
on average 5.5× and 9.7× higher performance and 10.3×
and 24.7× lower energy consumption than implementations of
CHOLMOD on an Intel Xeon E5-2637 CPU and an NVIDIA
V100 GPU, respectively.

Keywords-Cholesky factorization, sparse matrix decomposi-
tion, FPGA, OpenCL, high-performance computing, reconfig-
urable computing.

I. INTRODUCTION

Solving large symmetric sparse linear systems using

sparse Cholesky factorization plays a pivotal role in many

scientific computing and high-performance computing (HPC)

applications [1]–[4]. Nonetheless, the existing computational

solutions to sparse Cholesky factorization based on CPUs

and GPUs suffer from very limited performance due to two

primary reasons. First, sparse Cholesky factorization algo-

rithms (e.g., the multifrontal algorithms [5]) are recursive and

have complex data dependencies for sequentially updating

nodes in an elimination tree based on the intermediate results

from previous iterations. For the sake of data locality and

computational performance, an algorithm-tailored buffering

scheme for efficiently storing the intermediate results must

be employed for computing a sparse Cholesky factorization.

Unfortunately, the deep memory hierarchy and fixed hardware

architecture of CPUs and GPUs can hardly be adapted to

efficiently implement such an algorithm-tailored buffering

scheme. Consequently, CPU- and GPU-based solutions

suffer from poor cache locality and often require frequent

off-chip memory access for computing sparse Cholesky

factorization, greatly limiting their performance. Second,

sparse Cholesky factorization algorithms involve complex

operations (e.g., inverse square root) that are often computed

using approximation algorithms (e.g., the Newton-Raphson

method [6]) that are also iterative and have strong loop-

carried data dependency. Unfortunately, the legacy hardware

architectures of CPUs and GPUs, while being able to exploit

massive spatial parallelism, lack the capability to exploit

the temporal/pipeline parallelism that is critical to resolving

such loop-carried data dependency, which results in long

loop initiation intervals causing further reduced performance.

In addition to the limited performance issue of CPU- and

GPU-based sparse Cholesky factorization solutions for HPC

applications, these solutions suffer from very high energy

consumption due to high runtime (i.e., low performance) and

power consumption of CPUs and GPUs (e.g., 135 W thermal

design power for Intel Xeon Processor E5-2637 v3 [7] and

250 W for NVIDIA V100 TENSOR CORE GPU). The high

energy consumption of CPUs and GPUs in HPC data centers

has received significant attention due to its high economic,

environmental, and performance costs [8].

As FPGAs are being deployed as an emerging accelerator

in data centers [9], [10], FPGA computing offers an alter-

native solution to accelerating sparse Cholesky factorization

for HPC applications. An FPGA is a farm of configurable

hardware resources whose functionality and interconnection

can be redefined at run-time by programming its configuration

memory. A state-of-the-art FPGA carries an enormous

amount of fine- and coarse-grained logic, computation,

memory, and I/O resources. Upon the reconfiguration of these

resources, an FPGA can implement any custom hardware

architecture to accelerate algorithms with both performance

and energy efficiency gains [11]–[13]. Specifically, the fine-

grained logic resources and the abundant on-chip memory and

register resources on FPGA devices can be used to implement

the customized buffering scheme tailored to a given sparse

Cholesky factorization algorithm to allow efficient storage of

intermediate results and data movement among and within

processing elements (PEs) with no off-chip memory access

required [14], [15]. Furthermore, the hardware flexibility of

an FPGA allows its reconfigurable resources to compose not

only spatial but also temporal/pipeline parallelism both at a

fine granularity and on a massive scale to best resolve the

209

2021 IEEE 33rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

2643-3001/21/$31.00 ©2021 IEEE
DOI 10.1109/SBAC-PAD53543.2021.00032

20
21

 IE
EE

 3
3r

d 
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n 

Co
m

pu
te

r A
rc

hi
te

ct
ur

e 
an

d 
Hi

gh
 P

er
fo

rm
an

ce
 C

om
pu

tin
g 

(S
BA

C-
PA

D)
 |

 9
78

-1
-6

65
4-

43
01

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
SB

AC
-P

AD
53

54
3.

20
21

.0
00

32

Authorized licensed use limited to: ASU Library. Downloaded on August 04,2022 at 23:43:32 UTC from IEEE Xplore.  Restrictions apply. 



complex loop-carried data dependency that exists in sparse

Cholesky factorization algorithms to minimize loop initiation

intervals for improved performance [16]. Finally, FPGAs

have lower energy consumption than CPUs and GPUs due

to their lower runtime and power consumption.

So far, there has been limited work for accelerating

sparse Cholesky factorization on FPGAs [17], [18]. The

limitations of the existing work are three-fold. First, the

existing work adopts either the left-looking [18] or the

multifrontal algorithm [17] in their implementations. These

algorithms are less optimized in terms of the memory

access and computational complexity than the supernodal

multifrontal algorithm for sparse Cholesky factorization [5],

[17], [19]. Second, the existing work [18] based on the

multifrontal algorithm fails to provide a scheduling algorithm

for ordering and assigning the computation of different

nodes in an elimination tree. The lack of a scheduling

algorithm ignores the dependency among different nodes

in an elimination tree, which inevitably demands frequent

off-chip memory access and increases the size of on-chip

memory required to load and store intermediate results. Third,

the FPGA accelerator architecture proposed in [17] does not

allow on-chip communication among different PEs, which

enforces a large amount of off-chip memory access to occur

for transferring intermediate results among PEs.

Tradition FPGA design is at the hardware description

language (HDL) level, which is hard to be adopted by

software and application developers in the HPC community.

In recent years, high-level synthesis (HLS) technology that

auto-generates HDL codes from high-level programming

languages (e.g., C/C++, OpenCL, MATLAB, etc.) is becom-

ing increasingly mainstream and makes FPGA computing

a viable solution for HPC. However, new challenges also

arise in the new HLS-based FPGA design flow, such as how

to precisely define and optimize hardware architectures in a

software-defined fashion and how to construct efficient com-

putation pipelines for data flow processing using a memory-

compute-based programming model. FPGA computing is

currently an active area of research, and many questions are

yet to be answered.

In this paper, we propose FSCHOL, an OpenCL-based

HPC framework for accelerating sparse Cholesky factor-

ization on FPGAs. The proposed FSCHOL framework

consists of an FPGA kernel implementing an energy-efficient

and throughput-optimized hardware architecture and a host

program implementing a novel scheduling algorithm. We

adopt the supernodal multifrontal algorithm [5], [17], [19]

that requires much less memory access and features lower

computational complexity than the left-looking and the

multifrontal algorithm used in the existing work, which is

critical to more efficient hardware mapping and improved

performance.

Moreover, we propose a memory-optimized scheduling

algorithm for the host program for provisioning the execution

of the supernodal multifrontal Cholesky factorization, and

potentially all elimination-tree-based multifrontal methods,

on an FPGA device. The scheduling algorithm identifies

the dependency among computation nodes in an elimination

tree and correspondingly arrange their computation order

on the FPGA device to avoid off-chip memory access as

well as to minimize the on-chip memory requirements for

storing intermediate results. This is the key to enabling data

locality, thereby improving both computational performance

and energy efficiency. Finally, the proposed OpenCL-based

FPGA kernel architecture enables pipelined on-chip transfers

of intermediate results among PEs by utilizing FIFO channels

and eliminates undesired off-chip memory accesses by

working in coordination with the scheduling algorithm

running on the host side.

The contributions of this paper are summarized as follows.

• We propose an end-to-end OpenCL-based HPC frame-

work for accelerating sparse Cholesky factorization on

FPGAs, consisting of both an energy-efficient and deeply

pipelined FPGA kernel for accelerating the supernodal

multifrontal algorithm and a scheduling algorithm in the

host program for eliminating the off-chip memory access

and minimizing the on-chip memory requirements of

the FPGA kernel for handling intermediate results.

• The proposed FPGA hardware architecture is parameter-

ized and scalable. We propose a method for determining

the optimized architectural parameters for maximizing

the run-time performance given a suitable FPGA board.

• The proposed scheduling algorithm can be potentially

applied to all elimination-tree-based multifrontal algo-

rithms, including both the multifrontal and the supern-

odal multifrontal methods, for relaxing the memory

constraints of an accelerator device (e.g., an FPGA or

a GPU) in a host-accelerator computing model.

• We evaluate the performance and energy efficiency

of FSCHOL based on an Intel Stratix 10 GX FPGA

development board and compare it with CHOLMOD, a

state-of-the-art library for sparse Cholesky factorization,

running on an Intel Xeon E5-2637 CPU and an NVIDIA

V100 TENSOR CORE GPU, respectively, for factoriz-

ing the nd3k, Trefethen 20000b, smt, thread, pdb1HYS,

and nd24k matrices selected from SuiteSparse Matrix

Collection [20]. The experimental results show that

the proposed FSCHOL solution has on average 5.5×
and 9.7× higher performance and 10.3× and 24.7×
lower energy consumption than the CPU and GPU

implementation of CHOLMOD, respectively.

• We compare FSCHOL with the state-of-the-art FPGA

design [17] for running the same set of benchmarks

used in [17], namely nd3k, Trefethen 20000b, and

nd24k. The experimental results show that FSCHOL

improves the technology-node-normalized performance

on average by 11.7× for accelerating sparse Cholesky
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factorization on FPGAs over the reference method by

completely eliminating off-chip memory access via

software-hardware co-design.

II. BACKGROUND

Cholesky factorization is an efficient method for decompos-

ing a symmetric positive-definite matrix (A) into the product

of a lower triangular matrix and its transpose (L × LT ).

In many real-life science and engineering applications,

matrix A is sparse [21]. One of the significant methods for

sparse matrix factorization was introducing the multifrontal

Cholesky factorization [22].

The multifrontal method reorganizes the overall factoriza-

tion of a sparse matrix into a sequence of partial factorizations

of smaller dense matrices [5]. The main feature of the

multifrontal method is that the update contributions from

a factor column i (L(: i)) to the remaining submatrix are

computed and accumulated with contributions from other

factor columns before the updates are performed. Therefore,

this method reduces the number of memory accesses and

operations comparing to left or right-looking algorithms [17].

The main concepts in the multifrontal method are the

elimination tree, frontal and update matrices (denoted by F
and U , respectively), and the extended-add operation. The

elimination tree of the matrix L is defined as a tree structure

with n nodes such that node P is the parent of node C if and

only if the first subdiagonal nonzero element at column C is

located at row P . Figure 1a and 1b shows the nonzero pattern

of an example matrix L and its corresponding elimination tree,

respectively. If we define the critical path as the longest path

of nodes from the first to the top level of the elimination tree

(e.g., colored nodes in Figure 1b), the number of nodes in the

critical path determines the maximum amount of dependency

among nodes to be resolved.

A practical improvement to the multifrontal method is the

use of supenodes [5]. A supernode is a group of columns

(i.e., nodes in the elimination tree) if they can be treated

as one computational unit in the course of sparse Cholesky

factorization. If we define the sparsity structure (i.e., nonzero

patterns) of column j as Struct(L(:, j)), the set of contigu-

ous columns {j, j + 1, · · · , j + t} constitutes a supernode

if Struct(L(:, k)) = Struct(L(:, k + 1)) ∪ {k} [19]. One

can refer to [17] and [22] for the detailed comparison on

different sparse Cholesky factorization algorithms.

Figure 1c shows the supernodal elimination tree of Figure

1b. Algorithm 1 describes the sparse Cholesky factorization

using the supernodal multifrontal method. In Algorithm

1, notion nonzeros(V ) is equivalent to the dense form

(i.e., nonzero elements) of sparse vector V . Also, notion

⊕ represents the extend-add operation that adds two matrices

with different dimensions by extending the smaller matrix

with zeros. Comparing the critical path of the two methods,

the node dependency is reduced. Moreover, Algorithm 1

introduces more parallelism in each outer loop iteration.

a b c d e f g h i j k l m n o p
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tion tree.

Figure 1: The factor matrix sparsity pattern and its corre-

sponding elimination trees.

Additionally, since the update matrix is generated per

supernode rather than a node, the number of operations

and memory accesses is reduced.

III. RELATED WORK

A. Accelerating Basic Linear Algebra Subprograms (BLAS)
on FPGAs

The work in [23] presents parametrized implementations

of dot-product and matrix-vector multiplication kernels for

FPGAs and compares the performance and energy efficiency

of the FPGA kernels with the CPU and GPU implementations.

FBLAS [24] is an OpenCL-based, modular implementation of
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Algorithm 1: The supernodal multifrontal Cholesky

factorization [5]

1 for each supernode S in increasing order of first column subscript do
2 Let S = {j, j + 1, · · · , j + t};
3 Let j + t, i1, · · · , ir be the locations of nonzero elements in

L(:, j + t);
4 FS =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aj,j aj,j+1 · · · aj,j+t aj,i1
· · · aj,ir

aj+1,j aj+1,j+1 · · · aj+1,j+t aj+1,i1 · · · aj+1,ir

.

.

.
.
.
. · · ·

.

.

.
.
.
. · · ·

.

.

.
aj+t,j aj+t,j+1 · · · aj+t,j+t aj+t,i1 · · · aj+t,ir
ai1,j ai1,j+1 · · · ai1,j+t 0 · · · 0

.

.

.
.
.
. · · ·

.

.

.
.
.
. · · ·

.

.

.
air,j air,j+1 · · · air,j+t 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

5 nchildren := no. of children of S in supernodal elimination tree;
6 for C from 1 to nchildren do
7 FS = FS ⊕ U ; // update(S,C)
8 end

/* start of factorize(S) */
9 for i from 0 to t do

10 nonzeros(L(:, j + i)) = FS(i :, i)/
√

FS(i, i);
11 end
12 US = FS(t + 2 :, t + 2 :

) −

⎡
⎢⎢⎣
li1,j+t

.

.

.
lir,j+t

⎤
⎥⎥⎦
[
li1,j+t · · · lir,j+c

]
;

/* end of factorize(S) */
13 end

the BLAS library for FPGAs with scalability and reusability

benefits. While the existing work in [23] and [24] primarily

focus on accelerating BLAS, they do not target accelerating

sparse Cholesky factorization on FPGAs in the context of

HPC.

B. Sparse Cholesky Factorization on CPUs and GPUs

cuSPARSE [25] is a popular CUDA sparse matrix library

that can be used to approximate the sparse Cholesky factoriza-

tion on Nvida GPUs. Since such an approximation algorithm

is intrinsically different from the Supernodal Multifrontal

algorithm adopted in this work that exactly computes the

sparse Cholesky factorization, cuSPARSE is not considered

as a reference method for comparison in this paper.

CHOLMOD [26] is a set of routines for factorizing sparse

symmetric positive definite matrices for CPUs and GPUs

[27] using multifrontal and supernodal multifrontal sparse

Cholesky factorization methods. Its supernodal Cholesky

factorization provides highly optimized implementations

relying on LAPACK and the Level-3 BLAS.

Recursive behavior of sparse Cholesky factorization algo-

rithms and complex data dependencies among nodes in an

elimination tree result in frequent off-chip memory access and

poor cache locality. Moreover, complex iterative operations

(e.g., inverse square root) with strong loop-carried data

dependency in sparse Cholesky factorization algorithms lead

to lows temporal/pipeline parallelism. Therefore, running

these algorithms on CPUs and GPUs suffers low performance.

C. Accelerating Sparse Cholesky Factorization on FPGAs

The work in [18] and [17] are based on the left-looking

and multifrontal Cholesky factorization method. There is a

major drawback in both of these works. The left-looking

and multifrontal algorithms need more memory access and

have larger computational complexity than the supernodal

multifrontal algorithm [5]. Additionally, the work in [17]

requires a scheduling algorithm for assigning the computation

of nodes in an elimination tree to the FPGA accelerator.

However, [17] did not provide any scheduling algorithm,

resulting in suboptimal ordering of different nodes and,

consequently frequent off-chip memory access. Moreover,

their proposed hardware architecture introduces a long access

latency and high overhead to store and read intermediate

results to/from the off-chip memory. Since the work in [18]

did not provide the runtime of their design, we compare the

performance of FSCHOL with [17]. Neither of these two

works provided power or energy consumption.

IV. FRAMEWORK DESIGN

The FSCHOL framework consists of two parts: The FPGA

kernel and the host program running on the CPU. The

kernel code implemented on the FPGA accelerator performs

computationally intensive tasks. On the host side, the OpenCL

API supports efficient management and scheduling of tasks

running on the FPGA.

A. Hardware Architecture of the FPGA Kernel

1) Architectural Overview: Figure 2 shows a high-level

block diagram of FSCHOL’s hardware architecture, including

six modules: two processing elements (PEs), two load, and

two store modules. The PEs are responsible for computations,

while load and store modules read and write input and output

data to/from off-chip memory, respectively. All modules

process data in a pipelined and vectorized fashion. PEs are

connected to load and store modules via FIFO channels. Also,

PEs utilize FIFOs to send and receive intermediate results

to/from each other. Separating load/store modules from PEs

and connecting them using a FIFO helps compensate for the

difference between the off-chip memory bandwidth and the

data processing throughput.

When the data processing throughput does not match

the available off-chip memory bandwidth, and loading and

storing primary input and output data happen in the same

module that the data are being processed, the load and store

operations would be stalled for the computation units. When

the depth of the FIFO channels is optimized by the offline

compiler, the load and store modules are able to continuously

read and write data from/to the off-chip memory and write

and read them to/from the channels, respectively. For each

supernode, in addition to several consecutive columns of

input matrix A depending on the size of the supernode, a

PE needs configuration information on how to process the

assigned supernode (job). The job information is set by the
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Figure 2: The high-level block diagram of the hardware

architecture.

Table I: Configuration bits of a job.

Attribute Description Type

job.up supernode is partially updated

Boolean
job.last c supernode is going to be updated by its last

child
job.F rd intermediate matrix F should be read from

inter-module FIFO
job.F wr intermediate matrix F should be written to

inter-module FIFO
job.U rd update matrix U should be read from FIFO

scheduling algorithm in the host program. Therefore, channels

QA and Qjob are used to send the elements of matrix A
and the job information, respectively. Channel QP is used to

send the Boolean elements of the pattern matrix to PEs for

the extend-add operation which the details are discussed in

Section IV-A3. Channel QL sends the consecutive columns

of factor matrix L of the corresponding processed supernode

from a PE to the store module. Channels QF transmit the

intermediate value of matrix F among PEs.

2) Load/Store Modules: Each load module iterates over

the number of jobs that are assigned by the scheduling

algorithm. First, the load module sends a data structure

containing the configuration bits of the assigned job described

in Table I. When a supernode S is assigned to a PE, S needs

to be updated by all of its children according to lines 6-8 of

Algorithm 1. Bit job.up determines whether S is updated by

any of its children. If not, the load module reads input data

from off-chip memory and write them to QA to be consumed

by a PE. Store modules read the output data from PEs and

send them to the off-chip memory as soon as a vector of

factor matrix L is ready.

3) Processing Element (PE): Based on Algorithm 1, we

define two major operations in each outer loop iteration:

update, and factorize. Operation update(S,C) (line 7

of Algorithm 1) updates the frontal matrix of supernode

S (FS) using the update matrix of its child supernode C

(UC). Operation factorize(S) (lines 9-12 of Algorithm 1)

produces t+ 1 columns of factor matrix L and the update

matrix of supernode node S (US). Figure 3 shows the high-

level block diagram of each PE. Modules Vector Addition

and Matrix Extension are responsible for operation update
and modules Sqrt, Vector Division, Outer Product, and Vector

Subtraction perform operation factorize. For each scheduled

job, a PE performs one update and one factorize operation

(depending on the update status of FS) in a pipelined and

vectorized fashion.

When there is no available update matrix to update the

frontal matrix of supernode S, intermediate (i.e., partially

updated) values of FS are stored to complete the update

process (the for loop at lines 9-11 of Algorithm 1) later.

Storage units for storing intermediate results inside each PE

include RAM MemU for the update matrix, FIFO channel

QU for the extended matrix update matrix, and FIFO channel

QF,PE for the partially updated frontal matrix. Two inter-

module FIFO channels are used to send and receive the

intermediate matrix F (QF ) among PEs whenever necessary.

For each job, PE starts by reading the configuration bits

to control the multiplexers. Vectors VU and VF are defined

to represent a vector with size V L of matrices F and U ,

respectively. If job.up is not set, node S is not updated

by any of its children, and its factor vector VF was not

initialized with the values of matrix A as described in line 4

of Algorithm 1. Therefore, vector VF is initialized by input

data from QA. If node S is already updated, depending on the

value of job.F rd, VF reads its value from QF or QF,PE .

According to Table I, if job.F rd is set, it shows that the

intermediate values of matrix F as the result of a previous

update of supernode S by one of its other children are stored

at the inter-module FIFO QF,PE ; otherwise they are stored

at intra-module FIFO QF . If node S does not have any child,

there is no update matrix to update node S. Therefore, Urd

determines whether vector VU should be initialized by zeros

(when there is no child) or by the values stored at QU . After

loading vectors VU and VF with the corresponding values,

they are added in parallel, and the output is stored at VF .

After adding vectors VU and VF , a PE decides whether

to store the results or feed VF to the pipeline for the

factorize(S) operation. As described in Table I, bit

job.last c defines whether node S is ready to be factorized.

If it is not set, PE stores vector VF in FIFO QF or QF,PE

depending on the value of job.F wr. If it is set, the PE

takes the square root of the first t+ 1 diagonal elements of

FS (f1,1, f2,2, · · · , ft+1,t+1) and divides the superdiagonal

elements of FS by the square root value. The PE uses

elements li1,j+t, li1,j+t, · · · , lir,j+c for the consequent outer

product operation. Moreover, update matrix US is computed

as describe at line 10 of Algorithm 1 and stored in MemU .

Figure 4 shows an example of the extend operation at

line 7 of Algorithm 1 and how update matrix U is extended

and stored on QU . The PE initializes an index counter for
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Figure 3: The high-level block diagram of a PE.

F =

⎡
⎣f1,1 f1,2 f1,3
f2,1 f2,2 f2,3
f3,1 f3,2 f3,3

⎤
⎦ , U =

[
u1,1 u1,2

u2,1 u2,2

]
, P =

⎡
⎣1 0 1
0 0 0
1 0 1

⎤
⎦

⇒ F ⊕ U =

⎡
⎣f1,1+u1,1 f1,2 f1,3+u1,2

f2,1 f2,2 f2,3
f3,1+u2,1 f3,2 f3,3+u2,2

⎤
⎦

Figure 4: An example of extend-add operation.

MemU and a vector of elements to zeros, and loops over

all elements of a Boolean pattern matrix (P ) received from

FIFO channel QP . If an element of matrix P is true, an

element of the update matrix in MemU is stored to the

vector location indexed by the counter, and the index counter

is increased by 1. Otherwise, the corresponding element of

the vector is skipped and kept as zero. Once V L iterations

have been passed, the vector is stored on QU .

4) OpenCL Implementation: FSCHOL takes advantage

of the loop unrolling technique provided by OpenCL for

parallel implementation of vectorized operations. The PEs are

implemented as autorun modules. An autorun module starts

executing automatically and does not need to be launched

by a host. Therefore, the Intel OpenCL offline compiler for

FPGA does not need to generate the communication logic

between the host and PEs, which reduces logic utilization and

enables additional performance optimizations [28]. However,

load and store modules are launched explicitly by the host

since they need to access off-chip memory.

Most storage units are implemented as FIFO channels

rather than RAMs, where random access is not required.

However, for MemU there is no choice other than using

RAMs. Although using shift registers would be more efficient

in terms of hardware complexity, the number of elements

to be stored is unknown at the compile time and depends

on dimensions of FS . Additionally, no intermediate data is

written and read to/from off-chip memory.

Table II: The required size (bits) for each storage unit.

Unit Size

QU (2×)
[(N +M)× (N +M)× V L]× V L×WLQF (2×)

QF,PE(2×)
MemU (2×) [N × V L]× [N × V L]×WL

As mentioned before, the datapath has V L single-precision

floating-point numbers, and the arithmetic submodules

perform V L operations in parallel. Table II shows the

size of storage units for each PE. Dimensions of FIFOs

and RAM blocks are represtend as Depth × Width and

Rows× Columns, respetively. Parameter WL is the word

length of the data format (e.g., 32 bits for single-precision

floating-point).

There are three tunable parameters: V L, N , and M .

Parameter M and N are used to scale the design to support

arbitrary sizes for frontal and update matrices based on the

maximum supernode size (i.e., the maximum number of

consecutive columns with the same sparsity pattern) and the

maximum number of nonzero elements among all columns of

the factor matrix, respectively. The total number of required

DSPs for the FPGA kernel with two PEs is equal to 7×V L+5.

According to Table II, total required size for the storage units

is (8N2 + 6M2 + 12M ×N)× V L2 ×WL bits.

5) Performance-optimized Model for Determining Design
Parameters: It is important to provide a guideline to

derive design parameters (V L, N , and M ) to minimize

the runtime subject to the available on-chip resources and

the characteristics of the input matrices.

We formulate the runtime (R) as R = N
F×P×U , where

N , F , P , and U are the number of floating-point operations

(FLOPs) to factorize a matrix using Algorithm 1, the clock

frequency, the computational parallelism, and the spatial-

temporal utilization factor, respectively. U is a statistical

metric that measures the average occupation (in both space

and time) of the available computation resources in a
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computing device for performing the FLOPs of a given

algorithm. Therefore, U is the average ratio of effective

computational parallelism per clock cycle ranging from 0 to

1. N is an algorithmic parameter and depends on dimensions

and the sparsity structure of the input matrix. P is determined

by the total number of utilized DSP units calculated as

7× V L+ 5. Therefore, R can also be expressed as

R =
NOps

F × (7× V L+ 5)× U
=

α

7× V L+ 5
, (1)

where α =
NOps

F×U is a empirical term that lumps the algorithm-

and implementation-specific terms NOps, F , and U . Note

that α is introduced mainly to simply the formulation and

can be treated as a constant when determining the optimal

architectural parameters.

We define the constrained optimization problem as

minimize R(V L) =
α

7× V L+ 5

subject to f1(V L) ≤ C1,f2(V L,M,N) ≤ C2,

M = � C3

V L
�,N = � C4

V L
�,

(2)

where f1(V L) = 7 × V L + 5 and C1 are the total

number of required and available DSP blocks, respectively,

f2(V L,M,N) = (8N2+6M2+12M×N)×V L2×WL and

C2 are the total required and available RAM size, respectively,

C3 is the maximum supernode size (i.e., maximum number

of consecutive columns of the factor matrix with the same

sparsity pattern), and C4 is the maximum number of nonzero

elements among all columns of the factor matrix. For the

total available RAM size (C2) one must consider a margin

from the values reported in the FPGA device datasheet to

consider for RAM resources used for the glue and control

logics.

Based on R(V L) = α
7×V L+5 , to minimize the runtime,

V L should be maximized. The constrained optimization

problem defined as Equation 2 has an analytical solution as

following.

1) Derive the first constraint for V L from f1(V L) ≤ C1.

2) Derive the second constraint for V L by using M =
� C3

V L� and N = � C4

V L� in f2(V L,M,N) ≤ C2.

3) Now we have two ranges of values for V L. The

maximum value of V L is determined from the tighter

constraint.

4) Using calculated V L, the values of N and M are found

from M = � C3

V L� and N = � C4

V L�.

B. Scheduling Algorithm

1) Concepts: The main challenges involved in co-

designing the scheduling algorithm with the the proposed

hardware architecture for the FPGA kernel stem from two

perspectives. On the one hand, as the objective of the

scheduling algorithm is to minimize the amount of off-chip

memory access on the FPGA device, the impact of workload

scheduling on the amount of off-chip memory access must be

accurately modeled based on the specific architecture of the

FPGA kernel. On the other hand, the scheduling algorithm

needs to generic enough to be able to adapt to the FPGA

kernel implementations in various computational parallelism

on different FPGA devices.

We propose and implement a scheduling algorithm that

intelligently assigns the update and factorization operations

(update and factorize) to PEs to minimize on-chip memory

requirements with no off-chip memory access for the storage

of intermediate results. The main goal of the algorithm is

to pipeline the dependency among a child supernode C and

its parent supernode S to avoid storing the update matrix of

supernode C. Therefore, the algorithm assigns operation

update(S,C) immediately after operation factorize(C).
In this order, when supernode C is factorized and its

update matrix is produced, the update matrix is consumed

by supernode S at the same PE to reduce the on-chip

storage requirements and reduce communications among

different PEs. We provide the pseudo-code only for PE1

as it is the same for PE2. Note that the algorithm works

for both supernodal and potentially multifrontal Cholesky

factorization.

2) Details: In Algorithm 2, list nc is used to keep track of

the number of children that each supernode is already updated

by. Line 3-6 works on supernodes with no child. Since they

do not have any dependency, it is only needed to initialize

the frontal matrix F with elements of the matrix A and

immediately factorize the supernode. Once a supernode with

no dependency is factorized in a PE, its update matrix is ready

to update its parent supernode. Therefore, the supernode ID

is pushed to PE’s queue. Then, the supernode ID is popped

from the queue, and the corresponding parent supernode is

updated. Suppose a supernode is updated by all of its children.

In that case, it is ready to be factorized, and the resulting

update matrix is used for updating the parent supernode

in the consequent job assigned to this PE. Otherwise, the

queue would be empty, and the algorithm starts with lines 3-6.

During this process, if a parent supernode needs to be updated

in a different PE than it was updated, the configuration bits

of the job assigned to the other PE is updated to let the PE

know that it has to send the intermediate frontal matrix to the

inter-module FIFO (QF ) as shown by crossed-out functions

in Figure 5.

The scheduling algorithm is implemented as a part of

the host code. As an example, we apply the algorithm to

the elimination tree illustrated in Figure 1c. The ordered

list of supernodes is T = [0, 4, 1, 2]. Lists P and NC
are [7, 3, 5, 8, 5, 6, 9, 9, 9,−1] and [0, 0, 0, 1, 0, 2, 1, 1, 1, 3],
respectively. Value −1 in list P shows that the last node is

reached. The output of this example is shown in Figure 5.
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Algorithm 2: The scheduling algorithm

Input: The list of (super)nodes with no child (T ), the

list of parents for each (super)node (P ), and

the list of the no. of children of each

(super)node (NC).

Output: The assignment of update and factorize
operations to each PE.

1 initialize list nc to zeros to keep track of the no.

children that each (super)node is updated by;

2 initialize two single-element queues Q1 and Q2 as

empty to store the ready (super)node to be updated

or factorized;

3 while the top (super)node is not factorized do
4 if Q1 is empty then
5 S = T [0];
6 assign update(S,−) to PE1;

7 remove T [0] from T;

8 p = P [S];
9 push(p,Q1);

10 else
11 S = pop(Q1);
12 indicate (super)node S is being updated;

13 indicate vector VU should be read from QU ;

14 if nc[S] is equal to zero then
15 if (super)node S was updated in this PE

then
16 indicate vector VF should be read

from QF,PE ;

17 else
18 indicate vector VF should be read

from QF ;

19 update the job bits of the assigned job

to other PE by indicating it should

write the intermediate vector VF to

QF ;

20 end
21 end
22 nc[S] + +;

23 if nc[S] is equal to NC[S] then
24 assign(p[S]) to PE1;

25 push(S,Q1);
26 end
27 end

/* similar approach for PE2 */
28 end

V. EVALUATION

A. Setup

We evaluate the performance and energy efficiency of

FSCHOL in terms of runtime (s) and energy consumption

(J). To evaluate the design, we select a set of matrices from

update(9,8) factorize(9)

update(8,3) factorize(8) update(9,6) send(F9)

update(3,1) factorize(3) update(6,5) factorize(6)

update(1,-) factorize(1) update(5,2) factorize(5)

update(9,7) store(F9) update(2,-) factorize(2)

update(7,0) factorize(7) update(5,4) store(F5)

update(0,-) factorize(0) update(4,-) factorize(4)

PE1 PE2

Figure 5: The output of scheduling algorithm for the

supernodal elimination tree in Figure 1c. The time increases

from bottom to top.

Table III: The specification of matrices chosen from the

SuiteSparse Matrix Collection.

Matrix #Supernodes #Rows Density (%)

nd3k 87 9,000 4.049
Trefethen 20000b 3,678 19,999 0.139

smt 856 25,710 0.567
thread 923 29,736 0.503

pdb1HYS 1,149 36,417 0.328
nd24k 625 72,000 0.554

Fault 639 30,305 638,802 0.007
Emilia 923 43,270 923,136 0.005

bone010 44,319 986,703 0.005

the publicly available SuiteSparse Matrix Collection [20]

(formerly known as the University of Florida Sparse Matrix

Collection), a set of sparse matrices in real applications.

The characteristics of the matrices are summarized in

Table III including matrix dimensions (the number of rows

and columns are equal), the density percentage calculated

from No. of Nonzero Elements
Matrix Size × 100, and the number of

supernodes.

The data format in our design is single-precision floating-

point (32-bit). We develop and implement FSCHOL using

Intel FPGA SDK for OpenCL with Quartus Prime Pro 20.1.

We compare FSCHOL with CPU and GPU versions of

CHOLMOD [26].

As mentioned before, the supernodal multifrontal method

decomposes the sparse Cholesky factorization into a series

of dense factorizations. These dense factorizations rely on

dense BLAS and LAPACK libraries. Therefore, to improve

the performance of the CHOLMOD library on CPU, we use

Intel Math Kernel Library (Intel MKL) [29] instead of single-

threaded BLAS and LAPACK routines. Intel MKL is a set

of highly optimized, threaded, and vectorized math functions

that maximize the performance of Intel’s processors.

We measure the performance of the CPU implementation

of CHOLMOD on a dual-socket Intel Xeon E5-2637 v3

CPU [7] with an effective bandwidth of 51 GB/s per socket,

and the GPU implementation of CHOLMOD on an NVIDIA

Tesla V100 GPU, one of the most powerful data center GPUs

for accelerating HPC [30]. Our work is evaluated on an Intel

Stratix 10 GX FPGA Development Board [31]. Table IV
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Table IV: Specifications of the CPU system, the GPU device,

and the FPGA board used in the evaluation.

Hardware Platform Specification

Intel Xeon E5-2637 v3
CPU

15M Cache, 3.50 GHz Clock Frequency, 4
Cores, 68 GB/s Memory Bandwidth

NVIDIA Tesla V100
GPU

16 GB HBM2, 640 Tensor Cores, 5120 CUDA
Cores, 1245-1380 MHz Clock Frequency, 900
GB/s Memory Bandwidth

Intel Stratix 10 GX
FPGA Board

5760 DSPs, 229 Mb M20K, 15 Mb MLAB,
15 GB/s Memory Bandwidth

Table V: Resource utilization on Intel Stratix 10 GX with

V L = 128, N = 4, and M = 2.

Resource ALUTs FFs RAMs DSPs

Utilization
315,858 634,846 6,844 901

17% 17% 58% 16 %

summarizes the specifications of the CPU system, the GPU

device, and the FPGA board used in the evaluation.

B. Experiment Results

1) Performance Comparison with CPU and GPU Imple-
mentations: The architectural parameters for implementing

the FPGA kernel are V L = 128, N = 4, and M = 2. The

FPGA kernel runs at 236 MHz. Table V shows the resource

utilization for the implemented FPGA kernel.

Table VI shows the performance comparison of FSCHOL

in terms of runtime in seconds with the GPU version of

CHOLMOD and the CPU version of CHOLMOD enhanced

with Intel MKL library for implementing the supernodal

multifrontal Cholesky factorization algorithm. The lower

runtime shows higher performance. According to Table VI,

the CPU implementation outperforms the GPU version of

CHOLMOD since algorithms and applications with low

arithmetic computation and complex memory handling are

more efficient to be mapped on CPUs than on GPUs [9].

Also, the GPU runs with the error correction code (ECC)

turned on at the base clock speed. One can further boost

the GPU performance using a boost clock speed with ECC

turned off [32] at the cost of much higher power consumption

and random bit errors. We choose the base clock speed with

ECC to evaluate the sustainable performance achievable in a

scientific computing environment. The GPU can not work at a

boost clock speed permanently or for a long time. Moreover,

turning off ECC compromise the results probabilistically

where accurate results are necessary for scientific computing.

Figure 6 shows the performance improvement of FSCHOL

over the CPU and GPU implementations for corresponding

the matrix. FSCHOL improves the performance of CPU and

GPU versions of CHOLMOD by 0.8×-29.4× and 3.7×-

33.7×, respectively. FSCHOL improves the performance on

average by 5.5× and 9.7× over CPU and GPU implemen-

tations, respectively. For matrices where FSCHOL is less

performant than the CPU implementation of CHOLMOD,

the sparsity pattern is less structured and there are too

Table VI: Runtime (second) comparison between the

FPGA implementation of FSCHOL and the CPU and GPU

implementations of CHOLMOD.

Matrix
CHOLMOD

FSCHOL
CPU GPU#

nd3k 0.31 0.99 0.05
Trefethen 20000b 3.56 4.82 1.30

smt 0.26 1.84 0.31
thread 0.47 2.04 0.34

pdb1HYS 0.36 2.40 0.42
nd24k 10.49 12.02 0.36

Fault 639 33.00 49.26 10.89
Emilia 923 55.57 62.90 15.57

bone010 23.28 58.48 15.88

# ECC on and base clock speed.
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Figure 6: Runtime speedup of the FPGA implementation

of FSCHOL over the CPU and GPU implementations of

CHOLMOD. The GPU runs with ECC turned on at the base

clock speed.

many supernodes that cause performance degradation, while

for matrices with a very structured sparsity pattern and a

small number of nonzero supernodes compared to the matrix

dimension, FSCHOL significantly improves the performance

as the performance scales with the number of supernodes

and the matrix size.

2) Performance Comparison with the State-of-the-art
FPGA Implementation: The work in [17] implemented the

multifrontal Cholesky factorization algorithm on a Xilinx

Virtex-7FPGA VC709 evaluation board with a 28nm FPGA

device [33]. Differently, FSCHOL is implemented on an

Intel Stratix 10 GX FPGA development board with a 14nm

FPGA device [34]. For a fair comparison, we normalize

the performance numbers of [17] to the 14nm technology

node using the scaling factor of delay = 1/S, where

S = 28/14nm, commonly used in the existing literature

[35]. In addition, the performance of the FSCHOL solution

is evaluated based on the same matrices used in the reference

work [17].

Table VII shows the performance comparison of FSCHOL
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Table VII: Runtime (second) comparison between the FPGA

implementation of FSCHOL and the reference work in [17].

Matrix [17] [17]# FSCHOL (Speedup)

nd3k 1.96 0.98 0.05 (19.6×)
Trefethen 20000b 3.94 1.97 1.30 (1.5×)

nd24k 10.12 5.06 0.36 (14.1×)

# Technology scaling to 14nm: delay = 1/S where S = L/14nm.

in terms of normalized runtime in seconds with the work in

[17] for implementing the multifrontal Cholesky factorization

algorithm. The original performance results of [17] are also

shown in Table VII. Similarly, the lower runtime shows the

higher performance, and the numbers in parentheses show

the performance improvement of FSCHOL with respect to

the corresponding matrix. The experimental results show that

the proposed FSCHOL solution outperforms the reference

design in terms of performance on average by 11.7× across

the three different benchmarks.

The performance improvement of FSCHOL over the work

in [17] is primarily due to the elimination of off-chip memory

access for buffering intermediate results as a result of our

software-hardware co-design methodology. Specifically, the

scheduling algorithm implemented in the host program is

tailored to the proposed hardware architecture of the FPGA

kernel to offload the computational workloads of different

supernodes in an optimized order that maximizes the data

reuse of intermediate results, thus avoids unnecessary off-chip

memory access.

3) Energy Efficiency Comparison with CPU and GPU Im-
plementations: We measure the average power consumption

of the Intel Stratix 10 GX development board using the Power

Monitor tool in the Board Test System (BTS) application

provided by Intel [36] during FPGA kernel execution. BTS

measures the supply voltage and the drawn current of the

entire FPGA board by reads values from on-board sensors.

For the power measurement of the CPU, we utilize likwid-

powermeter tool from Likwid [37] to access the Running

Average Power Limit (RAPL) counters on the Intel CPU.

The RAPL interface is controlled through MSR registers

[38]. For the power measurement of the GPU, we utilize the

POWER query option [39] of NVIDIA System Management

Interface (nvidia-smi) [40] tool.

Table VIII summarizes the energy consumption (J) of

different implementations calculated from multiplying the

runtime (s) and the power consumption (W ). Figure 7

show the energy consumption reduction factor of FSCHOL

over the CPU and GPU implementations for corresponding

the matrix. FSCHOL reduces the energy consumption of

the CPU and GPU implementations on by 1.6×-54.7×
and 8.5×-92.1×, respectively. FSCHOL reduces the energy

consumption on average by 10.3× and 24.7× over CPU and

GPU implementations, respectively. Since the work in [17]

did not provide any result on power or energy consumption,

Table VIII: Energy consumption (J) comparison between

the FPGA implementation of FSCHOL and the CPU and

GPU implementations of CHOLMOD.

Matrix
CHOLMOD

FSCHOL
CPU GPU#

nd3k 13 39 1
Trefethen 20000b 146 244 29

smt 11 72 7
thread 19 80 8

pdb1HYS 15 95 9
nd24k 430 723 8

Fault 639 1353 3523 240
Emilia 923 2279 8665 342

bone010 954 5108 349

# ECC on and base clock speed.
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Figure 7: Energy consumption reduction of the FPGA

implementation of FSCHOL compared to the CPU and GPU

implementations of CHOLMOD. The GPU runs with ECC

turned on at the base clock speed.

we can not compare FSCHOL in terms of energy consumption

with [17].

VI. CONCLUSION

In this paper, we present FSCHOL, an OpenCL-based

HPC framework for FPGA acceleration of sparse Cholesky

factorization. FSCHOL includes a deeply pipelined and

scalable FPGA kernel that accelerates supernodal multifrontal

Cholesky factorization algorithm and a scheduling algorithm

for efficient assignment of computational nodes for potentially

all elimination-tree-based multifrontal methods.

We propose a performance-optimized model to derive

architectural parameters for the FPGA kernel subject to the

available on-chip resources (DSPs and RAMs) and input

matrix characteristics (the maximum supernode size and the

maximum number of nonzero elements among all columns of
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the factor matrix) to map the design into suitable data-center

grade FPGAs.

The experimental results based on the Intel Stratix 10

GX FPGA development board for accelerating the Cholesky

factorization of a set of sparse matrices from SuiteSparse

Matrix Collection show on average one order of magnitude

higher performance and lower energy consumption compared

to the state-of-the-art implementations of sparse Cholesky

factorization on CPU, GPU, and the other FPGA work [17].
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