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ABSTRACT 
This paper exploits the use of a popular deep learning model -- the 
faster-RCNN -- to support automatic terrain feature detection and 
classification using a mixed set of optimal remote sensing and 
natural images. Crater detection is used as the case study in this 
research since this geomorphological feature provides important 
information about surface aging. Craters, such as impact craters, 
also effect global changes in many aspects, such as geography, 
topography, mineral and hydrocarbon production, etc. The 
collected data were labeled and the network was trained through a 
GPU server. Experimental results show that the faster-RCNN 
model coupled with a widely used convolutional network ZF-net 
performs well in detecting craters on the terrestrial surface.  
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1    INTRODUCTION 
Terrain feature recognition and classification has become a key 
research theme in the GIS and Geology community as evidenced 
by the increasing need to understand the composition of different 
landscapes and their geological processes [1]. Motivation for such 
research includes the need for disaster locationing and response 
[2], precise land management [3], and scaling up site-specific 
analysis onto local, regional, and national scales [4].  
        The ability to recognize different geomorphological features 
from satellite or natural images is also a key measure of success 
with respect to machine intelligence, which is widely employed to 
support geospatial intelligence projects[5], (natural) scene 
comprehension [6], navigation [7], and place-based studies [8].  
       Current popular approaches for terrain feature (or object) 
detection on aerial photographs or other optimal images always 
involves the use of segmentation and classification based on low 
to mid-level features, such as color, texture, and/or shape [9]. 
Some machine learning (ML) approaches, such as Support Vector 
Machines (SVM), or Random Forest, are always incorporated into 
the classification process. These conventional approaches work 
well for problems with smaller datasets and few outliers and/or 
less noise within the data. However, they always suffer from 
performance challenges when dealing with large datasets and 
complex detection or classification tasks.  
        Recently, deep learning techniques have become the state-of-
the-art in image processing and many other big data analytics 
tasks [10]. In comparison to conventional ML techniques, deep 
learning models (i.e. deep convolutional neural networks, DCNN) 
hold a deep structure with multiple interconnected layers and have 
the ability to self-learn low-level features from the raw data and 
composite them into mid-level to high-level semantics through 
information propagation and composition in the DNN model.  
        Differing from image classification [11], terrain feature 
recognition requires localization of an image object in addition to 
classification for its category. Szegedy [12] developed a DNN-
based regression model to learn both the geometry information 
and object class. This method was soon beaten by a R-CNN 
(Region-based CNN) model [13] which provided an almost 30% 
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increase in the mean average precision (mAP) on the same testing 
dataset. The model was then modified to reduce computation cost 
by convolution sharing across proposals [14]. The model then was 
additionally refined into the Faster-RCNN, which combines object 
detection network with RPN (Region Proposal Network) to 
further speed up the training process [15]. A recent benchmark on 
object detector across Faster-RCNN and other DNN models 
shows that Faster-RCNN achieves high accuracy as well as 
outstanding speed/accuracy tradeoff on various datasets [16].  
       Therefore, in this paper, we employ Faster-RCNN to support 
the terrain feature recognition task using a combination of remote 
sensing and aerial images. We start with a binary classification 
problem aiming at detecting the existence and location of craters, 
an important geomorphological feature that effects global changes 
in term of geography, topography, mineral and hydrocarbon 
production etc., as well as providing knowledge on surface aging 
and the Earth’s history [17]. Although craters seem to be an 
obvious feature to recognize using the naked eye, tools that apply 
machine vision for automatic crater detection have not been very 
successful due to: (1) craters, especially impact craters, often 
cluster together, therefore, it is difficult to separate one crater 
from its neighbor; (2) some other terrain features, such as 
volcanoes or valleys have similar characteristics as craters [18].  
        To address these challenges, the power of deep learning is 
harnessed. Section 2 introduces the architecture of the Faster 
RCNN model coupled with the ZF Net [19]. Section 3 describes 
the collection of the training data, the training process, the 
visualization of filters and feature maps for a testing image, as 
well as some preliminary results and analysis. Section 4 
summarizes the work and discusses future research directions. 

2 Method 

 

Figure 1: Architecture of the Faster-RCNN based deep 
learning model 

Fig. 1 demonstrates the architecture of the Faster-RCNN based 
deep learning model, which contains three major components: the 
deep convolutional neural network (DCNN), the region proposal 
network (RPN) and the object detection network (ODN). The 
DCNN is responsible for extracting representative features (or 

attributes) that characterize different types of objects through a 
chain of stacked convolutional layers. Popular network models 
include the ZF-net or VGG [20]. Since ZF-net is used in our 
implementation, we use it to explain the structure of a DCNN.  
        The main element of a DCNN is a convolution layer, the 
input of which is the raw image or a feature map, and the output is 
another feature map. A convolution operation is defined as 
applying a group of trainable filters f of certain size (i.e. 7*7) to 
all sub-regions sr of the same size in the input data using different 
moving steps. If we consider the values in a filter as weights, each 
cell in the resultant feature map will be the sum of the dot product 
of all elements in f and sr, and a bias parameter b. The output 
feature map from a convolution layer is often applied with an 
activation function to decide the signal of an element in the 
feature map is activated or not. Then the feature map is further 
processed by a pooling layer for down-sampling purposes. That is, 
the feature map is divided into non-overlapping smaller regions, 
and the maximal value is selected to represent each sub-region. 
The pooling operation generates an abstraction of representations 
of the feature map. This combined convolution, activation, and 
pooling layer can be defined as a full convolutional unit (we call it 
“conv” for short). When multiple such units are stacked together, 
it becomes a DCNN. In some cases, a convolution unit may only 
consist of convolution and activation without the pooling 
operation. We call such unit a “p-conv”. Take ZF-net as an 
example, it is composed by two conv layers and three p-conv 
layers. 
        After the convolution, the DCNN is connected with a RPN 
for generating region proposals. The RPN network starts with a p-
conv layer and then two separate convolutional layers (see the 
RPN box in Fig. 1). The bbox prediction layer is to output the 
predicted bounding box information for a detected object, while 
the cls layer is to output the score indicating whether or not there 
contains an object, regardless of its category, in the predicted 
bounding box. The loss function will be a weighted sum from the 
loss of both the cls layer and the bbox prediction layers. Although 
a variety of loss functions can be employed, they all follow the 
rule that the more significant the difference between the predicted 
value and the ground truth value is, the higher value the loss 
function will output. Therefore, minimizing the loss function is 
the major objective during the RPN training process. 
        The trained RPN will output the bounding box (BBOX) for 
detected object, next goal is to feed this information into the ODN 
to predict which category an object belongs to. The ODN layer 
can also be called a classification layer. Since the detected BBOX 
may be in different sizes, a ROI (Region of Interest) Pooling layer 
is applied to reproject feature map output from the DCNN and 
cropped by the BBOX into equal-dimension feature maps, then 
feed this data into two fully connected layers for classification 
(see ODN box in Fig. 1). The decision layer in this case includes 
two nodes, representing crater and non-crater categories, both 
have a value of 0-1, 1 is true for the category, 0 is not, values 
between 0 and 1 can be considered a possibility of the object 
belonging to a category. The loss function in the ODN measures 
the difference between predicted and ground-truth values.   
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3 Experiments and Results 

3.1 Training dataset 
To prepare for the training dataset, we manually collected and 
labeled 300 images (both remote sensing and aerial images) 
containing craters and 100 images of other categories, such as 
mountains, geysers, etc. Among the dataset, we randomly selected 
80% to use as training data and 20% to be used as testing data. 
Fig. 2 lists a few example training images. As shown, the raw 
input images can be of different sizes. Once entering the network 
for training, they will be resized into an image with the same 
dimension (224*224), as required by the ZF-net used in our 
DCNN implementation using CAFFE 
(https://github.com/BVLC/caffe).  

 

Figure 2: A list of training samples (both craters and non-
craters) 

3.2 Model training 
The training process includes four stages: in stage 1, the RPN 
model is trained. The parameters, say 𝑊!, in the DCNN network 
is initiated by a pre-trained model using large databases, such as 
ImageNet, to reduce training time. The parameters in the RPN 
model will start with some random values. In stage 2, the ODN 
will be trained with DCNN reinitiated using 𝑊! and randomly 
generated values for parameters in the fully connected layers. The 
trained parameters in the DCNN are denoted by 𝑊!. In Stage 3, 
parameters with RPN will be fine-tuned using DCNN with 𝑊!. In 
Stage 4, ODN is further trained using the newly adjusted BBOX 
obtained through Stage 3 towards a higher classification accuracy.  

  Through preliminary experiments, we found that when the 
iterations are set to be {40k, 20k, 40k, 20k} for stage 1-4, the 
network achieves a good balance between training and testing 
mAPs. Note, too many iterations may lead to a higher mAP for 
training data but it may also cause an overfitting problem. 
Therefore, this optimal iteration setting was used in the training 
process. 

3.3 Visualization of the feature maps 
        Fig. 3 demonstrates what the filters and the feature maps 
look like in the first and second layer of the DCNN module after 
the network is well trained. For ZF-Net, there are 96 filters in 
layer 1 and 256 filters in layer 2. Note that each filter should result 
in a different feature map. In our visualization, only the first 36 
feature maps are visualized for a clear view. Boxes in red show a 
correspondence of a filter with a resultant feature map. 
        It can be observed that the trained filter in layer 1 includes 
different texture and color patterns, some of which help to identify 
the edge information of a crater. In layer 2, since each filter has 96 
channels (bands), and only three bands can be used to generate the 
feature map image, it is difficult to distinguish their patterns. 
However, from the feature maps one can tell that the area and 
shape (circular) characteristics were captured in this layer. This 
visualization result showcases how a DNN model derives 
knowledge through hierarchical composition of semantic 
information from shallower to deeper layers.  

 

Figure 3: Visualization of filters and feature maps at the first 
and second layer of DCNN. 

3.4 Results and Analysis 
The experiments were run on a GPU server using a Geforce GTX 
980 chip with 6GB memory, the total training time was 233 
minutes for the proposed iteration setting and a learning rate 
(0.001). The mAP can reach over 97% for training data and 90% 
for testing data. Fig. 4 illustrates detection results for a few 
sample images. The results show that the deep learning model is 
capable of detecting multiple craters coexisting in the same scene 
(Fig. 4(a)), very small instances (in Fig. 4(b)), and those adjacent 
to each other (Fig. 4(c)). This is a benefit from the outstanding 
self-learning ability of the DCNN with an optimized training 
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process. In addition, the results also show that it is possible to 
transfer the knowledge learned from an aerial image to make 
predictions for craters in the remote sensing image, the labeled 
training data of which is less available than the labeled aerial 
images. However, we also observed some false positive results. 
As shown in Fig. 4(d), there exist two connected craters and their 
shared border was erosion. Although they were detected, but only 
at a low accuracy and detected as one instance rather than two. 
The network should be better tuned to handle such complexity in 
the future.  

 

Figure 4: Detection results from trained Faster-RCNN model 

4 CONCLUSIONS 
In summary, we implemented a Faster-RCNN based deep learning 
model for recognizing terrain features automatically. Although 
DNN models have been exploited in object detection tasks in the 
literature, few works have focused on characterizing natural 
terrain objects. This is partially because such objects do not have a 
clear edge as other manmade object does. Training data for this 
task, especially from remote sensing images are also rare. In this 
work, we take a combination of natural scene and remote sensing 
images as the training data in the hope that the knowledge learned 
about terrain objects in a natural scene image can also be 
transferred to detect and categorize those in a remote sensing 
image. In this work, we verified the feasibility of using natural 
images to compliment the scarcity of labeled remote sensing 
training images for crater detection.  
        In the future, several directions are worth immediate 
investigation. First, we are extending to model to support the 
multi-class terrain feature classification and recognition problem. 
Although the network creates very high accuracy on the binary 
classification problem, we expect its performance (accuracy, 
training time) to be affected when being extended to classify 
multiple terrain objects simultaneously. Second, to further 
increase the prediction accuracy, we are working on extending the 
Faster-RCNN model by a set of ensemble approaches. We expect 

this work to contribute significantly to the attempt of using new 
and AI (Artificial Intelligence) methods for exploiting terrain 
objects not only on the Earth surface but also on other planet, such 
as Mars, to support a variety of discovery with regard to 
geological, geographical, and geophysical processes.    
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