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Abstract

The rapid growth of Internet-of-things (IoT) and artificial
intelligence applications have called forth a new comput-
ing paradigm–edge computing. In this paper, we study
the suitability of deploying FPGAs for edge computing
from the perspectives of throughput sensitivity to work-
load size, architectural adaptiveness to algorithm char-
acteristics, and energy efficiency. This goal is accom-
plished by conducting comparison experiments on an In-
tel Arria 10 GX1150 FPGA and an Nvidia Tesla K40m
GPU. The experiment results suggest that the key ad-
vantages of adopting FPGAs for edge computing over
GPUs are three-fold: 1) FPGAs can provide a consis-
tent throughput invariant to the size of application work-
load, which is critical to aggregating individual service
requests from various IoT sensors; (2) FPGAs offer both
spatial and temporal parallelism at a fine granularity and
a massive scale, which guarantees a consistently high
performance for accelerating both high-concurrency and
high-dependency algorithms; and (3) FPGAs feature 3–
4 times lower power consumption and up to 30.7 times
better energy efficiency, offering better thermal stability
and lower energy cost per functionality.

1 Introduction

The Internet-of-Things (IoT) will connect 50 billion de-
vices and is expected to generate 400 Zetta Bytes of data
per year by 2020. Even considering the fast-growing size
of the cloud infrastructure, the cloud is projected to fall
short by two orders of magnitude to either transfer, store,
or process such vast amount of streaming data [3]. Fur-
thermore, the cloud-based solution will not be able to
provide timely service for many time-sensitive IoT appli-
cations [1] [14]. Consequently, the consensus in the in-
dustry is to expand our computational infrastructure from
data centers towards the edge. Over the next decade, a
vast number of edge servers will be deployed to the prox-

imity of IoT devices; a paradigm that is now referred to
as fog/edge computing.

There are fundamental differences between traditional
cloud and the emerging edge infrastructure. The cloud
infrastructure is mainly designed for (1) fulfilling time-
insensitive applications in a centralized environment;
(2) serving interactive requests from end users; and
(3) processing batches of static data loaded from mem-
ory/storage systems. Differently, the emerging edge in-
frastructure has distinct characteristics, as it keeps the
promise for (1) servicing time-sensitive applications in
a geographically distributed fashion; (2) mainly serving
requests from IoT devices, and (3) processing streams of
data from various input/output (I/O) channels. Existing
IoT workloads often arrive with considerable variance in
data size and require extensive computation, such as in
the applications of artificial intelligence, machine learn-
ing, and natural language processing. Also, the service
requests from IoT devices are usually latency-sensitive.
Therefore, having a predictable performance to various
workload sizes is critical for edge servers.

Existing edge servers on the market are simply a
miniature version of cloud servers (cloudlet) which are
primarily structured based on CPUs with tightly cou-
pled co-processors (e.g., GPUs) [7] [6] [8] [2]. However,
CPUs and GPUs are optimized towards batch processing
of in-memory data and can hardly provide consistent nor
predictable performance for processing streaming data
coming dynamically from I/O channels. Furthermore,
CPUs and GPUs are power hungry and have limited en-
ergy efficiency [4], creating enormous difficulties for de-
ploying them in energy- or thermal-constrained applica-
tion scenarios. Therefore, future edge servers call for
a new general-purpose computing system stack tailored
for processing streaming data from various I/O channels
at low power consumption and high energy efficiency.

OpenCL-based field-programmable gate array
(FPGA) computing is a promising technology for
addressing the aforementioned challenges. FPGAs are



highly energy-efficient and adaptive to a variety of
workloads. Additionally, the prevalence of high-level
synthesis (HLS) has made them more accessible to ex-
isting computing infrastructures. In this paper, we study
the suitability of deploying FPGAs for edge computing
through experiments focusing on the following three
perspectives: (1) sensitivity of processing throughput to
the workload size of applications, (2) energy-efficiency,
and (3) adaptiveness to algorithm concurrency and
dependency degrees, which are important to edge
workloads as discussed above.

The experiments were conducted on a server node
equipped with a Nvidia Tesla K40m GPU and an Intel
Fog Reference Design Unit [9] equipped with two Intel
Arria 10 GX1150 FPGAs. Experiment results show that
(1) FPGAs can deliver a predictable performance invari-
ant to the application workload size, whereas GPUs are
sensitive to workload size; (2) FPGAs can provide 2.5–
30 times better energy efficiency compared to GPUs; and
(3) FPGAs can adapt their hardware architecture to pro-
vide consistent throughput across a wide range of con-
ditional or inter/intra-loop dependencies, while the GPU
performance can drop by up to 14 times from the low- to
high-dependency scenarios.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the background; Section 3 describes the
methodology; Section 4 discusses experimental results;
and Section 5 concludes the paper.

2 Background

An FPGA is a farm of logic, computation, and storage
resources that can be reconfigured dynamically to com-
pose either spatial or temporal parallelism at a fine gran-
ularity. Traditional FPGA design requires hardware de-
scription languages, such as VHDL and Verilog, making
it out of the reach of application developers. The advent
of HLS technology [5] has opened enormous opportuni-
ties. Today, one can develop FPGA kernel functions in
high-level programming languages (e.g., OpenCL [12])
and deploy the compiled hardware kernels in a run-time
environment for real-time computing [10]. Note that
OpenCL is a universal C-based programming model that
can execute on a variety of computing platforms, in-
cluding CPUs, GPUs, DSP processors, and FPGAs [13].
The recently-extended support of OpenCL by FPGAs
has opened the gate for integrating FPGAs into hetero-
geneous HPC, cloud, and edge platforms.

Different from widely adopted CPUs and GPUs in the
cloud, FPGAs come with several unique features ren-
dering them an excellent candidate for edge comput-
ing. First, unlike GPUs and CPUs that are optimized
for batch processing of memory data, FPGAs are inher-
ently efficient for accelerating streaming applications. A

Figure 1: An Intel Fog Reference Design unit hosting
two Nallatech 385A FPGA Acceleration Cards.

pipelined streaming architecture with data flow control
can be easily built on an FPGA to process streams of
data and commands from I/O channels and generate out-
put results at a constant throughput with reduced latency.

Second, FPGAs can adapt to any algorithm character-
istics due to their hardware flexibility. Different from
CPUs and GPUs that can mostly exploit only spatial
parallelism, FPGAs can exploit both spatial and tempo-
ral parallelism at a finer granularity and on a massive
scale. In spatial parallelism, processing elements (PEs)
are replicated in space, while data is being partitioned
and distributed to these PEs in parallel. In temporal par-
allelism, processing tasks that have dependency among
each other are mapped onto pipelined PEs in series, while
each PE in the pipeline can take data with different times-
tamps in parallel. FPGAs can construct both types of par-
allelism using their abundant computing resources and
pipeline registers [11]. This unique feature makes FP-
GAs suitable for accelerating algorithms with a high de-
gree of both data concurrency and dependency. There-
fore, FPGAs keep the promise to serve a wider range of
IoT applications efficiently.

Third, FPGAs consume significantly lower power
compared to CPUs and GPU [4] for delivering the same
throughput, allowing for improved thermal stability and
reduced cooling cost. This merit is critically needed for
edge servers, considering their limited form factors.

3 Methodology

To confirm and quantify the aforementioned benefits of
FPGA-based edge computing, we designed and con-
ducted three sets of experiments to evaluate FPGAs vs.
GPUs from the perspectives of (1) performance sensitiv-
ity to workload size, (2) adaptiveness to algorithm con-
currency and dependency degrees, and (3) energy effi-
ciency.

All the GPU-related experiments were conducted on a
server node equipped with an Nvidia Tesla K40m GPU,
dual Intel Xeon E5-2637 v4 CPUs, and 64GB of main
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Figure 2: Multi-stage matrix multiplication on (a) a GPU
and (b) an FPGA.

memory. All the FPGA-related experiments were con-
ducted on an Intel Fog Reference Design unit [9] (see
Figure 1) equipped with two Nallatech 385A FPGA
Acceleration Cards (Intel Arria 10 GX1150 FPGA),
an Intel Xeon E5-1275 v5 CPU, and 32GB of main
memory. The OpenCL kernels for FPGAs were com-
piled using Intel FPGA SDK for OpenCL (version 16.0)
with Nallatech p385a sch ax115 board support packages
(BSP). The GPU OpenCL kernels were compiled at run-
time using available OpenCL library in CUDA Toolkit
8.0. Results discussed in the next section will show
that the FPGA substantially outperforms the GPU in
several important aspects, despite that the GPU has a
much higher theoretical throughput (4.29TFlops) than
the FPGA (1.5TFlops).

4 Experiment Results

4.1 Sensitivity to Workload Size
The purpose of this experiment is to demonstrate the sen-
sitivity of FPGA and GPU to workload size. IoT devices
are usually latency sensitive and expect predictable la-
tency and throughput from edge servers. We used a two-
stage matrix multiplication (A×B×C) as the benchmark,
to model edge workloads. This operation is widely used
in linear algebraic algorithms and is generic enough for
the purpose of this experiment. Many IoT workloads,
such as voice and image recognition, are heavily depen-
dent on the linear algebraic operations. All three matri-
ces are of dimension 32x32 and contain single-precision
floating-point random numbers. Input matrices are pro-
vided as a batch, and the batch size represents the work-
load size. We varied the batch size between 2 to 2048 in
the experiment. The processing throughput (number of
matrices/ms) is defined as the ratio of the workload size
over the total runtime.

Figures 2a and 2b illustrate the difference of execu-
tion flow between the GPU and the FPGA. To exploit
spatial parallelism, the GPU must first read the data from
DRAM, perform A×B for the entire batch, and store the
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Figure 3: Sensitivity of matrix multiplication throughput
(number of computed matrices per millisecond) sensitiv-
ity to batch size (number of matrices received per batch)

intermediate results (I) in the GPU global memory. Once
the writing of I is done, the subsequent I×C can be per-
formed by reading I back from the global memory. Dif-
ferently, the FPGA can exploit temporal parallelism and
utilize dedicated pipes (channels) to transfer the inter-
mediate results from one stage to another without block-
ing the execution. Unlike the GPU, the FPGA reads the
input from the Ethernet I/O channel. The execution of
A×B×C is fully pipelined by the streaming architecture
implemented in the FPGA, such that the matrix samples
can flow in and out of the FPGA through I/O channels
one after another without waiting regardless of the batch
size.

Figure 3 shows the throughput comparison between
the GPU and the FPGA across different batch sizes. It
is shown that the FPGA can deliver a consistently high
throughput by jointly exploiting spatial and temporal par-
allelism. Specifically, the FPGA outperforms the GPU
for small batch sizes (up to 128) in spite of its much
lower operating frequency. In contrast, the GPU perfor-
mance varies largely according to the batch size. GPUs
rely on interleaving a large batch of input data to hide
the device initialization and data communication over-
head. When dealing with small batch size, such over-
head will dominate total execution time and degrade the
throughput especially when the operations involved have
some levels of dependency. Overall, the experiment re-
sults show that FPGAs not only are efficient in han-
dling aggregated service requests coming from individ-
ual devices in small batch sizes but also can guarantee a
consistently high throughput with a well-bound latency.
Therefore, FPGAs are highly suitable for edge comput-
ing given the considerable variance in workload size of
various IoT applications.

4.2 Adaptiveness
To evaluate how well FPGAs and GPUs adapt to algo-
rithm characteristics, we designed benchmarks to cap-
ture two types of dependencies: data dependency, which
represents the dependency across different iterations of a
loop, and conditional dependency, which represents the
dependency on conditional statements with each iteration
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of the loop.
Our benchmark resembles an algorithm made of a sim-

ple iterative block (for-loop) where each iteration per-
forms a certain number of operations. The loop length
and ops variables define the total number of iterations
and the total number of operations per iteration (set to
262144 and 512 in the experiment), respectively. All
variables are single-precision in the experiments. Note
that the objective of our experiments is to reveal the im-
pact of architecture adaptiveness to algorithm character-
istics rather than evaluating the performance for a spe-
cific algorithm. In addition, our synthetic algorithm with
a single for loop is generic enough to model large set of
computationally intensive applications.

The benchmark captures data dependency by introduc-
ing dependency among different iterations of the loop.
When there is no data dependency, every single iteration
is considered as independent and all the iterations can
execute in parallel. With data dependency, the iterations
that are dependent on one another need to be executed se-
quentially as a group. Therefore, by varying the data de-
pendency degree, i.e., the average size of the groups, we
can control the data parallelism available in the algorithm
using this benchmark. GPU’s performance is closely tied
to the available data parallelism. In comparison, FPGA
can exploit PEs in series and receive iterations regard-
less of the dependency. Different iterations can co-exist
and be executed in the pipeline while traversing down the
connected PEs concurrently.

To introduce conditional dependency, we add if-else
statements into the iterations of the loop in the bench-
mark. Half of the iterations are in the if block and the
other half are in the else block. Only the iterations that
follow the same branch path can be executed in a data
parallel fashion. To reveal the performance impact of
conditional dependency, we vary the number of opera-
tions in each if and else block, which affects the ini-
tialization overhead and consequently the overall perfor-
mance. GPU is highly sensitive to conditional depen-
dency because it can parallelize only the iterations that
take the same path at one time. In comparison, FPGA
can configure the hardware to include all different execu-
tion paths, and use a simple lookup table to direct every
thread into the right pipeline and execute all threads at
the same time.

In order to get the best performance out of the FPGA
and the GPU, the above algorithms were deployed us-
ing two different methods. For the GPU, we designed
an equivalent OpenCL kernel and deployed it in the
NDRange mode to accelerate concurrent operations by
exploiting spatial parallelism. For the FPGA, we com-
piled the FPGA kernel in the single-threaded mode to
accelerate dependent operations by exploiting temporal
parallelism, in which case loop execution is initiated se-
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Figure 4: Comparison of (a) raw and (b) normalized
throughput at low and high data dependency degrees.

quentially in a pipelined fashion.
Data Dependency. Figures 4a and 4b show the raw and
the normalized throughput (to system frequency fclk) for
both a low (16) and a high (256) data dependency, re-
spectively. In general, computation throughput is lin-
early proportional to both fclk and architectural paral-
lelism. The normalized throughput decouples fclk from
the evaluation and measures the pure impact of architec-
ture parallelism on throughput. For the GPU, the base
frequency of the board is used as fclk. For the FPGA, fclk
is extracted from the full compilation report. It is shown
that the GPU performance drops by 14 times from the
low to the high data concurrency. As data concurrency
increases from 16 and 256, the available data parallelism
(the number of loop iterations that can be executed in
parallel) for the GPU drops from 16384 to 1024. It is
the lack of temporal parallelism that makes GPUs hardly
adaptive to such changes in concurrency and dependency
degrees. On the contrary, the FPGA delivers a stable
throughput regardless of such changes. This is because
the hardware resources on an FPGA can be reconfigured
dynamically to compose either spatial or temporal paral-
lelism (interchangeable) at a fine granularity. As a result,
FPGA outperforms GPU by 3.32 folds with the high data
concurrency, and this gap is expected to grow as the de-
pendency degree further increases.
Conditional Dependency. Figure 5 shows the perfor-
mance drop with respect to the conditional dependency
introduced by if-else statements, as the number of oper-
ations in each if and else block grows from 8 to 1024.
It shows that the FPGA performance is relatively sta-
ble as the conditional dependency increases. For some
specific cases, the performance is even increased due to
a higher clock frequency compared to the baseline ker-
nel. In contrast, the GPU experiences up to 37.12 times
performance drop, compared to baseline kernel with no
conditional statements. Branches from the conditional
statements cause different threads in a warp to follow
different paths, creating instruction replay and resulting
in reduced throughput. Figure 5 also shows that having
fewer operations in the kernel causes more degradation
for the GPU since a smaller kernel does less computa-
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Figure 5: Performance drop comparison for kernel with
conditional statements.

tion and incurs relatively higher initialization and data
transfer overhead.

4.3 Energy Efficiency

To evaluate energy efficiency, we measured the work-
load throughput divided by its average power usage. To
project energy efficiency, the power consumptions of
both devices were recorded for all of the experiments.
We used the nvidia-smi command-line utility and the
Nallatech memory-mapped device layer API to query the
instant board-level power consumption every 500 mil-
liseconds for the GPU and FPGA, respectively. We then
calculated the average power usage by averaging all the
power numbers recorded across five trials of each experi-
ment. Note that our heterogeneous testing platform does
not affect the energy calculation since we only measure
the board power consumption.

Figure 6a and 6b show the power consumption and
energy efficiency comparison for performing the matrix
multiplication tasks mentioned in Section 4.1, for dif-
ferent batch sizes. Running at a much lower frequency,
the FPGA consistently consumes 2.79–3.92 times lower
power than the GPU. Taking into account the perfor-
mance, it shows that the FPGA can provide 2.6–30.7
times higher energy efficiency than the GPU for execut-
ing matrix multiplication. The improvement is promi-
nent, especially for small batch sizes. The low power
consumption and the high energy efficiency of the FPGA
suggest that deploying FPGAs for edge computing can
potentially gain better thermal stability at lower cooling
cost and reduced energy bill.

Figure 6c depicts the energy efficiency comparison
for running the workloads with different dependency de-
grees (mentioned in Section 4.2). The results show that
the FPGA achieves a similar throughput to the GPU for
executing the kernels with a high data concurrency de-
gree (low data dependency degree of 16). For the high-
data-dependency (degree of 256) workload, the FPGA
achieves up to 11.8 times higher energy efficiency than
the GPU. Such energy efficiency improvement is ex-
pected to further increase as the dependency degree
grows. The experiment results indicate that the FPGA
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Figure 6: The caparisons of (a) power consumption, (b)
energy-efficiency for the matrix multiplication tasks, and
(c) the data dependency benchmark.

is almost on par with the GPU regarding energy effi-
ciency for executing high-concurrency algorithms, while
it significantly outperforms the GPU for executing high-
dependency algorithms.

5 Conclusions and Future work

In this paper, we studied three general requirements
of IoT workloads on edge computing architectures and
demonstrated the suitability of FPGA accelerators for
edge servers. Our results confirm the superiority of FP-
GAs over GPUs with respect to: (1) providing workload-
insensitive throughput; (2) adaptiveness to both spatial
and temporal parallelism at fine granularity; and (3) bet-
ter energy efficiency and thermal stability. Based on our
observations, we argue that FPGAs should be consid-
ered a replacement or complementary solution for cur-
rent processors on edge servers.

Based on these results, we will further study FPGA-
based edge computing along the following possible di-
rections. First, we will extend the study of adaptive-
ness capabilities of both GPUs and FPGAs by consid-
ering other important types of algorithm characteristics.
Second, we plan to improve our benchmarking kernels to
reflect a wider variety of real-world algorithms. Finally,
we will also extend our energy-efficiency study for other
types of workloads and algorithm characteristics.
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