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Abstract

Although various 3D datasets with different functions and scales have been proposed
recently, it remains challenging for individuals to complete the whole pipeline of large-
scale data collection, sanitization, and annotation. Moreover, the created datasets usually
face the challenge of extremely imbalanced class distribution or partial low-quality data
samples. Motivated by this, we explore the procedurally synthetic 3D data generation
paradigm to equip individuals with the full capability of creating large-scale annotated
photogrammetry point clouds. Specifically, we introduce a synthetic aerial photogram-
metry point clouds generation pipeline that takes full advantage of open geospatial data
sources and off-the-shelf commercial packages. Unlike generating synthetic data in vir-
tual games, where the simulated data usually have limited gaming environments created
by artists, the proposed pipeline simulates the reconstruction process of the real envi-
ronment by following the same UAV flight pattern on different synthetic terrain shapes
and building densities, which ensure similar quality, noise pattern, and diversity with real
data. In addition, the precise semantic and instance annotations can be generated fully
automatically, avoiding the expensive and time-consuming manual annotation. Based on
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the proposed pipeline, we present a richly-annotated synthetic 3D aerial photogrammetry
point cloud dataset, termed STPLS3D, with more than 16 km2 of landscapes and up to
18 fine-grained semantic categories. For verification purposes, we also provide datasets
collected from four areas in the real environment. Extensive experiments conducted on
our datasets demonstrate the effectiveness and quality of the proposed synthetic dataset.

1 Introduction

Small Unmanned Aerial Vehicle (sUAV) and photogrammetry technologies have witnessed
dramatic development over the past few years, enabling rapid reconstruction of large ter-
rain with several square kilometers. Compared with the airborne LiDAR mapping [76, 81,
86], aerial photogrammetry offers an affordable solution for 3D mapping, hence attracting
widespread attention from both researchers and industry practitioners for various applica-
tions [13, 33, 34, 66]. Recently, a handful of works [10, 14, 15, 22, 35, 36, 37, 38, 44, 58, 72]
have started to explore the semantic understanding of large-scale 3D point clouds, with
promising results and insightful conclusions achieved.

Although a number of 3D datasets [3, 6, 19, 27, 28, 30, 36, 39, 48, 53, 59, 61, 62, 63,
71, 75, 76, 81, 86] have been proposed in the last decades, it remains highly challenging
for individuals to complete the whole pipeline of the customized dataset production inde-
pendently for three reasons. 1) The annotation of large-scale 3D data is labor-intensive and
time-consuming. In contrast to 2D data annotation, annotating 3D data such as point clouds
requires extensive training to navigate and operate in the 3D environment [30]. 2) Due to the
limitations of hardware configurations (e.g., availability of gimbal) and survey constraints
(e.g., flight altitudes and overlaps between images), the reconstructed point clouds are usu-
ally relatively small in size or have low-quality data samples (non-uniform density, holes,
outliers, etc.), which may have a negative impact on the execution of subsequent tasks. 3)
Considering the long-tail distribution of objects in the real world, the created datasets are
likely to suffer from extremely imbalanced class distribution, which poses extra challenges
for downstream tasks such as semantic understanding [36].

Motivated by this, we develop a fully automatic pipeline for controllable, high-quality,
and photorealistic synthetic aerial photogrammetry 3D data generation. In particular, the rich
annotations, including semantic and instance labels, can be generated effortlessly as byprod-
ucts of our pipeline. Specifically, the proposed data generation pipeline has the following
appealing advantages: 1) Unlike other virtual gaming engine-based generation approaches
[24, 59], where only limited gaming environments created by artists are used, our pipeline
fully exploits existing open geospatial data sources to set up the 3D environment, with a large
variety of authentic terrain shapes and building densities. 2) Considering the homogeneous
architectural styles and construction materials in real-world environments, we leverage pro-
cedural modeling tools to create building models with variations and adapted different ma-
terial databases to enrich the diversity of building appearances. 3) We explicitly balance the
class distribution in the real world by heuristically placing 3D models of underrepresented
objects in virtual environments. 4) Lastly, instead of random points sampling or ray casting
[24, 60, 83] on the 3D surfaces, we simulate similar UAV paths over the virtual terrain as the
real-world survey, followed by the photogrammetry steps to reconstruct the 3D point clouds.
This ensures that the generated 3D point clouds from our pipeline have similar quality and
even comparable noise as real-world aerial photogrammetry data since the exact same data
collection and reconstruction processes are executed.
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Figure 1: Example point clouds in STPLS3D dataset. Top row: synthetic point clouds with
point-wise semantic and instance annotations. Bottom row: real point clouds captured from
USC.

With the proposed synthetic data generation pipeline, we have further built a large-scale
photogrammetry 3D point cloud dataset, termed Semantic Terrain Points Labeling - Syn-
thetic 3D (STPLS3D), which is composed of high-quality, rich-annotated point clouds from
real and synthetic environments, as shown in Figure 1. Specifically, we first collect real-
world aerial images using photogrammetry best practices with quadcopter drone flight at a
low altitude with significant overlaps between adjacent photos. We then reconstructed point
clouds with a 1.27 km2 landscape following the standard photogrammetry pipeline. Next,
we follow the same UAV path and flying pattern to generate 62 synthetic point clouds with
different architectural styles, vegetation types, and terrain shapes. The synthetic dataset cov-
ers about 16 km2 of the city landscape, with up to 18 fine-grained semantic classes and 14
instance classes. Extensive experiments were conducted on our STPLS3D dataset to validate
the quality and function of the synthetic dataset. In particular, by incorporating our synthetic
dataset into the training pipeline, existing deep neural architectures can achieve visible im-
provement on the real data, even without adopting any domain adaptation techniques. To
summarize, the main contributions of our paper are listed as follows:

• We built a unique, richly-annotated large-scale photogrammetry point clouds dataset
with synthetic and real subsets, covering more than 17 km2 of the city landscape.

• We introduce a fully automatic pipeline for controllable, high-quality, and photoreal-
istic synthetic aerial photogrammetry 3D data generation.

• Extensive experiments demonstrate the quality and function of the generated synthetic
data.

2 Related works
Here, we provide a brief overview of existing 3D datasets; for comprehensive surveys, please
refer to [25, 29, 36, 48, 76, 81]. 3D Real-World Datasets. Thanks to the development of
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Table 1: Comparison with the representative aerial datasets used for segmentation of 3D
point clouds. 1The number of categories with instance labels, 2Labeled area.

Name and Reference # Semantic # Instance1 # Views / scenes 2D Annotations Area2 (km2) Sensor
DublinCity [86] 13 No 8,504 / 2 No 2

Aerial LiDARDALES [76] 8 No 1 large scene - 10
LASDU [81] 5 No 1 scene - 1.02

Swiss3DCities [6] 5 No 3 scenes No 2.7 quadcopter + photogrammetry
Campus3D [48] 14 4 classes 6 scenes No 1.58 quadcopter + photogrammetry

SensatUrban [36] 13 No 3 scenes No 4.4 fixed wing + photogrammetry
STPLS3D - Real 6 No 16,376 / 4 Yes 1.27 quadcopter + photogrammetry

STPLS3D - SyntheticV1 5 No 17,164 / 14 Yes 4.22 Synthetic Aerial photogrammetry
STPLS3D - SyntheticV2 17 14 classes 13,229 / 24 Yes 5.76 Synthetic Aerial photogrammetry
STPLS3D - SyntheticV3 18 14 classes 15,888 / 25 Yes 6 Synthetic Aerial photogrammetry

remote sensing technologies, considerable efforts have been devoted to building 3D datasets
and benchmarks for semantic understanding. To capture 3D rich geometry of the real envi-
ronments, previous works usually adopted RGB-D sensors [1, 7, 18, 67, 68, 74] for indoor
3D scenes and utilized terrestrial scanners [30, 53, 54], mobile scanners [3, 5, 9, 19, 27, 55,
62, 64, 70, 71, 73, 75], and aerial laser scanners[43, 61, 76, 81, 86] for outdoor environments.
Additionally, researchers from remote sensing communities also collected large-scale 3D
scene-based datasets (e.g., construction sites) [32, 80] through photogrammetry techniques
with quadcopter drones and fixed-wing UAVs as the main platform. In particular, a hand-
ful of recent works have started to mount multiple sensors together on UAVs for efficient
data collection in a large district [4, 33, 50]. Overall, the scale of recent datasets has be-
come increasingly large, and the content covers sufficient information for multiple purposes.
However, due to the survey configuration and the specific photogrammetry software [36, 48]
used, noticeable drawbacks could be found in the existing released datasets, such as missing
points on the vertical surfaces, large holes, and non-uniform point density, etc. In addition,
insufficient and incorrect annotations are another common issue that could deteriorate the
quality of the dataset, further leading to the inability to fairly and comprehensively evaluate
the performance of deep neural models for subsequent tasks.
3D Synthetic Datasets. Due to the expensive data collection and annotation costs, several
works have explored the possibility of creating replaceable 3D synthetic data. Specifically,
earlier works typically focused on creating synthetic point clouds for individual objects [8,
52, 57, 77, 82], while recent works have started to investigate the synthetic generation of
the outdoor 3D point clouds in virtual gaming environments [12, 20, 24, 28, 42, 45, 59,
60, 79, 83]. However, the geometrical structure, noise pattern, and sampling scheme of
these datasets are still different from the real environment, leading to visible domain gaps.
Additionally, since the gaming environments were manually created by artists and designers,
the spatial scale of existing synthetic datasets is also limited. By contrast, we explore the
outdoor large-scale 3D scene synthesis from aerial views and photogrammetry techniques
with procedurally generated virtual environments. Table 1 compares the statistics of the
proposed STPLS3D with a number of existing aerial 3D datasets.

3 Synthetic Data Generation Pipeline
The synthetic data generation pipeline is illustrated in Figure 2. Overall, the main idea is
to replicate the steps one would take when creating aerial photogrammetry point clouds in
the real world. In particular, we focused on bringing 3D virtual assets in the simulation that
is close to reality and reconstructing point clouds with similar quality as the real ones to
minimize the domain gap between synthetic and real data as much as possible.
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Figure 2: The proposed synthetic data generation pipeline.

3.1 Procedural 3D Environment Generation

To ensure the placements of objects in the virtual environments roughly follow the form of
a real city block, we built 3D virtual environments based on the Geographic Information
System (GIS) data sources [26] (i.e., building footprints, road networks, and digital surface
models) that are publicly available. Specifically, 3D road segments are placed and extended
along the road vectors obtained from the Open Street Map (OSM) [31]. 3D trees, vehicles,
and other city furniture are placed in the scene using predefined strategies to increase its
realism and diversity. Distance constraints are also heuristically introduced during object
placements to avoid unrealistic situations such as the intersection between objects. Addi-
tionally, such constraints are also used to ensure the locations of each object are contextually
reasonable, i.e., the vehicles, street signs, and light poles will be on or near the roads. Be-
sides, placing the trees pure randomly throughout the environment may produce unnatural
results. Therefore, trees are placed in clusters within polygonal areas procedurally generated
as boundaries to simulate forests. In addition, individual trees are also placed around the
buildings within a buffer to simulate the residential blocks. Please refer to Appendix D for
more details on our designed object placement principles.

This study used Computer Generated Architectural (CGA) shape grammar of CityEngine-
based tools to create 3D building models based on the OSM building footprints. The pro-
cedural tool automatically extruded the footprints and added architectural elements. The
overall façades generation and architectural element placements allow various types of 3D
buildings to be generated from the same building footprint with different predefined CGA
rules. Both the building types and heights were randomly assigned during the building gen-
eration process to ensure the synthetic environments cover a large spectrum of building vari-
ations.

3.2 2D Image Rendering and 3D Reconstructions

The naive solution to generating a point cloud with the created 3D environments would be
either directly sampling points on the 3D model surface or using a ray casting approach with
predefined camera parameters. However, it produces point clouds that perfectly match the
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3D virtual environment, which does not have the same quality and noise level as the data that
was collected from the real world. To reduce the domain gap that exists between the sampled
or ray-casted points and the real-world aerial photogrammetry point clouds, we propose to
first render the 2D images in Unreal Engine 4 (UE4) using the AirSim simulator [65]. In par-
ticular, we utilized weather effects to simulate fog, wind and changing sunlight directions,
so as to generate more realistic 2D images from the virtual environment. With the rendered
2D images, we then reconstructed the 3D point clouds using the off-the-shelf commercial
photogrammetry software (i.e., Bentley ContextCapture). In particular, we keep the soft-
ware consistent with that of reconstructing point clouds from real-world photos. Please refer
to Appendix C for the intuitive quality comparison between the ray-casting 3D points, the
synthetic photogrammetric points, and the real-world photogrammetric point clouds.

3.3 Semantic and Instance Annotation

Finally, the generated synthetic point clouds are enriched with semantic and instance anno-
tations that are automatically generated while rendering the 2D images. Note that, due to the
noises introduced from the photogrammetry reconstruction process, directly casting the 2D
labels to the photogrammetry point cloud will create misaligned annotations. To this end, we
transfer the rendered 2D annotations to the photogrammetry point clouds with the following
two steps. First, we create a proxy 3D point cloud using the ray casting method with the
known intrinsic and extrinsic camera parameters and depth maps. Next, we transfer the la-
bels from the proxy 3D point cloud to the photogrammetry points through a nearest-neighbor
search algorithm, with the constraint that ground points are connected to form a large con-
nected component and reduce the inconsistent projections due to the simulated wind effects.
Though a small amount of mislabeled points may still occur at the boundaries between dif-
ferent objects, they did not have a significant impact while training the segmentation models
in our experiments.

As shown in Figure 2, the proposed pipeline can generate synthetic point clouds with
semantic and instance annotations. It is worth mentioning that the instance annotations are
very useful for tasks such as vegetation identification (e.g., tree segmentation [21]) and for-
est management (e.g., automatic tree counting [47]) since it is highly challenging or even
infeasible to obtain precise instance labels in the real data (e.g., hundreds of thousands of
overlapped trees need to be manually segmented from forest areas).

4 Datasets

We first conducted surveys on four real-world sites, including the University of Southern Cal-
ifornia Park Campus (USC), Wrigley Marine Science Center (WMSC) located on Catalina
Island, Orange County Convention Center (OCCC), and a residential area (RA). The aerial
images were collected using a crosshatch-type flight pattern with predefined overlaps rang-
ing from 75%∼85% and flight altitudes ranging from 25m∼70m. The 3D data were recon-
structed using a standard photogrammetric process and manually annotated with one of the
six semantic class labels. Following that, we used our designed synthetic data generation
pipeline with the same UAV flight pattern to generate an extra 62 synthetic point clouds in a
wide variety of synthetic environments. In particular, three versions of the synthetic datasets
were generated with different focuses. Examples of different versions of the synthetic data
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Figure 3: Examples of our STPLS3D dataset, including the proposed Synthetic V1, Syn-
thetic V2, Synthetic V3, and the real-world subsets. Different semantic classes are shown in
different colors, as illustrated in the color legend. Note that different instances are displayed
in different random colors. Best viewed in color.

and real data are shown in Figure 3. Please refer to Appendix B and I for detailed discussions
of our released datasets and the available semantic labels.

4.1 Comparison
We provide an empirical comparison of the cost to collect the 3D data in real-world and vir-
tual environments. Specifically, the real-world data (1.27 km2) was collected with over four
months of team efforts for data collection (including getting flight permits, planning and re-
peatedly executing the data collection process), processing, and annotation. By contrast, the
synthetic data (>16 km2) was generated by a single person using one desktop PC within
a month (with an Intel Core™ i9-10900X CPU and an NVIDIA RTX 3090 with 24G mem-
ory). In particular, the time cost for synthetic data generation is not constrained by available
workforce talent and can be parallel accelerated with additional computing resources.

5 Experiments

5.1 Evaluation of 3D Semantic segmentation
We selected five representative approaches, including PointTransformer [84], RandLA-Net
[35], SCF-Net [22], MinkowskiNet [17], and KPConv [72], as the baselines to build a se-
mantic segmentation benchmark in our STPLS3D. Specifically, we used the original archi-
tectures of these approaches and only adapted the data-related hyperparameters to our dataset
(see Appendix H). The mean Intersection-over-Union (mIoU) and Overall Accuracy (oAcc)
are used as the evaluation metrics. Note that the semantic categories of the synthetic datasets
are inconsistent with the real-world dataset (18 vs. 6); see Appendix J for details of the class
mapping.

Three groups of experiments were conducted to investigate whether and how synthetic
data impact the semantic segmentation performance of real-world data. Note that all three
groups of experiments are tested on the test set of the real-world dataset (i.e., WMSC split),
but trained with different settings: 1) Train in the real-world training set. 2) Train in synthetic
datasets (V1-V3) only. 3) Train in both real and synthetic datasets.

The quantitative performance of baselines is reported in Table 2. It can be seen that: 1)
MinkowskiNet achieves the best overall performance with a mIoU score of 46.52% when
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Table 2: Quantitative evaluation of the baselines on the WMSC dataset.
Training sets Methods mIoU (%) oAcc (%) Per Class IoU (%)

Ground Building Tree Car Light pole Fence

Real subsets
PointTransformer [84] 36.27 54.31 39.95 20.88 62.57 36.13 49.32 8.76

RandLA-Net [35] 42.33 60.19 46.13 24.23 72.46 53.37 44.82 12.95
SCF-Net [22] 45.93 75.75 68.77 37.27 65.49 51.50 31.22 21.34

MinkowskiNet [17] 46.52 70.44 64.22 29.95 61.33 45.96 65.25 12.43
KPConv [72] 45.22 70.67 60.87 32.13 69.05 53.80 52.08 3.40

Synthetic subsets
PointTransformer [84] 45.73 86.76 84.12 73.37 60.60 16.96 27.23 12.10

RandLA-Net [35] 45.03 81.30 76.78 57.74 56.08 28.44 40.36 10.78
SCF-Net [22] 47.82 82.69 77.51 68.68 56.81 29.87 42.53 11.52

MinkowskiNet [17] 50.78 87.64 85.23 72.66 64.80 31.31 36.85 13.83
KPConv [72] 49.16 88.08 85.50 70.65 63.84 28.75 32.97 13.22

Real+Synthetic
PointTransformer [84] 47.64 84.37 80.19 76.35 57.13 36.35 23.72 12.10

RandLA-Net [35] 50.53 86.25 82.90 66.59 63.77 33.91 41.84 14.19
SCF-Net [22] 50.65 83.32 77.80 58.98 64.86 46.37 40.50 15.41

MinkowskiNet [17] 51.35 84.90 80.86 74.03 59.21 31.72 45.51 16.79
KPConv [72] 53.73 89.87 87.40 78.51 66.18 39.63 41.30 9.34

only trained on the real-world dataset. 2) All baselines achieved better mIoU when trained
on the synthetic dataset compared with training on the real-world dataset, despite the fact that
there is inevitably a domain gap that exists. This is likely because the synthetic dataset is
much larger than real data in spatial scale and contains more variations of terrain shapes and
building styles. 3) All baselines achieved the best mIoU when trained on real and synthetic
datasets. In particular, KPConv achieved an improvement of nearly 8% in mIoU score by
training on the synthetic + real-world data. These results clearly validate that the synthetic
datasets could have a positive impact on the performance of real-world 3D understanding.
On the other hand, we also noticed that the addition of synthetic subsets into training sets
leads to significant performance improvement for categories such as ground and building but
with limited improvement or even worse results for small objects. This is likely due to the
domain discrepancy between the real data and synthetic data. In particular, two issues need
to be further addressed in future work: 1) Although we randomly assigned various materials
to different objects, limited geometrical variations of 3D game objects were adopted when
creating the synthetic subsets. 2) There is a lack of enforcing comprehensive contextual
relationships between specific objects. For instance, cars placed off the road have random
orientations in synthetic datasets, but vehicles in a parking lot are usually heading in the
same direction in rows in real-world environments.
Cross Datasets Generalization. We further verified the generalization ability of the trained

Table 3: Quantitative generalization performance of baselines on the FDc dataset.
Training sets Methods mIoU (%) oAcc (%) Per Class IoU (%)

Ground Building Tree Car Light pole Fence

Real subsets
PointTransformer [84] 49.40 85.85 85.23 47.77 76.72 39.51 28.61 18.56

RandLA-Net [35] 51.84 84.79 88.14 46.88 61.40 48.72 46.04 19.83
SCF-Net [22] 53.79 86.66 89.19 53.12 65.28 48.91 46.59 19.63

MinkowskiNet [17] 52.85 83.28 82.76 40.30 71.68 47.00 49.33 26.04
KPConv [72] 57.80 87.20 86.69 63.41 66.32 46.36 56.08 27.95

Synthetic subsets
PointTransformer [84] 58.65 92.01 90.42 74.54 85.18 31.76 42.36 27.67

RandLA-Net [35] 59.38 91.33 90.15 69.20 82.21 50.13 40.36 24.20
SCF-Net [22] 58.82 90.49 89.53 62.39 81.55 52.99 44.10 22.36

MinkowskiNet [17] 56.17 90.55 90.74 66.11 78.63 36.86 36.41 28.26
KPConv [72] 61.92 92.35 91.41 68.31 86.00 48.97 51.99 24.82

Real+Synthetic
PointTransformer [84] 62.14 91.96 89.74 74.79 84.73 45.10 46.75 31.72

RandLA-Net [35] 61.38 92.31 91.25 68.71 84.35 55.04 43.30 23.83
SCF-Net [22] 61.89 92.10 90.99 68.69 84.99 55.58 45.36 25.71

MinkowskiNet [17] 62.59 93.16 91.66 74.70 87.97 48.80 43.95 28.49
KPConv [72] 65.01 93.03 91.86 71.44 87.12 54.77 55.39 29.48
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model on the photogrammetry Fort Drum cantonment (FDc) dataset (i.e., dataset #7 in [11]).
Note that the main differences between the FDc and our STPLS3D real data are that the cold
weather tree dominates the vegetation types, the aerial images were collected with smaller
overlaps (50% to 60%), resulting in lower quality 3D data, and FDc contains various vehicle
types including military vehicles that do not exist in the STPLS3D real data. Please refer to
the Appendix K for data visualization.

As shown in the quantitative results reported in Table 3, we can see that 1) KPConv
consistently achieved the best generalization performance on the FDc dataset, regardless
of the variation of training sets. 2) Similarly, all baselines achieved better generalization
performance when trained on the synthetic dataset and achieved the best performance when
trained on real and synthetic datasets. In particular, the generalization performance (i.e.,
mIoU score) of PointTransformer achieved an improvement of nearly 13% when augmented
with synthetic datasets during training. This clearly shows that the proposed synthetic dataset
is helpful for improving the generalization capacity of the trained deep learning model.

5.2 Evaluation of 3D Instance Segmentation

For instance segmentation, we selected two representative voxel-based approaches, including
PointGroup [41] and HAIS [16], as the baselines to build an instance segmentation bench-
mark in our STPLS3D. Considering the large spatial size of our dataset, we first tuned the
data-related hyperparameters (i.e., voxel size and cluster radius) to adapt to our dataset and
then utilized the weighted loss to mitigate the class imbalance issue. We followed the com-
mon practice of using the mAP, mAP50, and mAP25 as the main evaluation metrics. The
SyntheticV3 dataset was selected again for evaluation, and the quantitative results achieved
by different baselines are shown in Table 4.

It can be seen that HAIS outperformed PointGroup and achieved the best mAP, mAP50,
and mAP25 with 40.4, 51.9, and 57.3, respectively. We also noticed that the performance
of both baselines on our dataset is still far inferior to that of existing indoor datasets (i.e.,
Scannet [18] and S3DIS [1]). We attribute this performance gap to the natural differences
between the large-scale outdoor and the indoor scenes, where the size of the objects in the
outdoor environments are dramatically different (i.e., buildings vs. bikes) compared to the
indoor scenes. In addition, the limitation of the aerial photogrammetry technique may pose
extra challenges to 3D instance segmentation, where objects that are physically close to each
other may not have a clear boundary in terms of geometry and texture (i.e., 3D reconstruction
of forests may result in solid blobs). With the identified challenges posed by large-scale

Table 4: Quantitative evaluation of two instance segmentation baselines on the synthetic v3
subset.
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HAIS[16]
AP 35.1 66.8 20.9 17.6 23.2 75.7 51.9 42.6 31.1 7.4 50.8 47.0 8.3 22.6 25.7

AP50 46.7 73.9 35.7 25.0 29.2 86.9 61.3 65.2 39.2 17.0 69.0 62.9 13.7 27.9 46.5
AP25 52.8 75.9 46.8 31.9 32.1 89.0 66.0 72.0 44.5 22.1 75.4 68.1 15.0 31.7 68.4

PointGroup[41]
AP 23.3 60.0 11.6 10.7 19.2 58.7 39.8 27.6 21.2 2.2 12.0 23.7 8.1 13.9 18.1

AP50 38.5 70.4 28.3 19.0 25.4 83.9 57.9 47.9 35.3 7.9 44.0 46.8 14.7 19.6 38.4
AP25 48.6 73.7 43.8 23.7 29.5 87.9 61.4 59.8 42.3 19.4 68.1 66.8 16.6 22.6 64.9
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outdoor scenes, we hope our STPLS3D will pave the way for future works on designing
and developing more general and effective instance segmentation techniques that can also
achieve satisfactory performance on outdoor scenes.

6 Discussions and Limitations
To facilitate the research in the community, we will release not only all of the 3D point clouds
but also all byproducts and relevant data, including 2D source images, annotation masks,
intrinsic and extrinsic camera parameters, depth maps, and meshes. Thus STPLS3D also
holds great potential for supporting other computer vision-related tasks beyond 3D semantic
and instance segmentation. Tasks such as neural rendering for large outdoor scenes [51, 78],
style transfer for both 2D and 3D aerial data [23, 40, 46, 49, 56, 85], 3D scene reconstruction,
and object detection can all be supported.
Limitations. The proposed STPLS3D has been demonstrated to have good data quality and
functions; it also has limitations. First, the generated synthetic 3D environments do not have
sufficient high-level contextual priors between objects, such as generating realistic site plans
for houses or placing vehicles, bikes, and motorcycles in parking lots, etc. Second, there is
a visible domain gap between the synthetic and real-world data since the 2D appearance of
the rendered images does not have the same style as the real-world images. We leave these
domain adaptation issues for future exploration.

7 Conclusion
In this paper, we present STPLS3D, a large-scale aerial photogrammetry dataset with real
and synthetic 3D point clouds. In particular, a fully automatic synthetic data generation
pipeline is introduced to produce high-quality, richly-annotated 3D synthetic point clouds.
Extensive experiments demonstrated the quality and functions of the generated synthetic
datasets. Additionally, we also show that incorporating the synthetic data into the training
set could be a good way of data augmentation, and the learning capacity and generalization
ability of existing deep neural models could be further strengthened. Overall, synthetic data
is easy to acquire and free of annotation, and potentially helpful for avoiding overfitting and
generalized representation learning. We believe this is a promising research avenue for fu-
ture research and hope our STPLS3D will inspire more research works on other tasks such
as domain adaptation and pretraining.
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Appendices

A Data availability
Our STPLS3D datasets can be downloaded at: www.stpls3d.com/data

B Data collection & generation details
Video Illustrations. We provide an video demo illustrating our synthetic data generation
pipeline discussed in Section 3. The video can be viewed at https://youtu.be/
6wYWVo6Cmfs.

Real-World Datasets To capture the real-world 3D data, we first used DJI Phantom 4
Pro for the collection of aerial images. An autonomous UAV-path planning and imagery col-
lection system called rapid aerial photogrammetric reconstruction system (RAPTRS) [69]
was adopted for the survey. Specifically, RAPTRS encodes photogrammetry best practices
and allows aerial photographs collected with multiple flights to cover a large area of interest.
The aerial images were collected using a crosshatch-type flight pattern with predefined over-
laps ranging from 75%∼85% and flight altitudes ranging from 25m∼70m. We conducted
surveys on four real-world sites, including the University of Southern California Park Cam-
pus (USC), Wrigley Marine Science Center (WMSC) located on Catalina Island, Orange
County Convention Center (OCCC), and a residential area (RA).

For richer diversity, we selected the area of interest to have different building and terrain
types. USC campus mainly consists of commercial buildings with the paved ground (vehicle
roads, pedestrian roads, and squares). Approximately 20% of the campus is covered by
grassland and tree canopy. The average height of buildings is around 5∼6 floors. WMSC
contains terrain with a valley and cliffs located on the shoreline of an island. OCCC is
a large convention center located in the tourist district of Orlando. The surroundings of
OCCC, including the parking lots and vegetated areas, are also included in our datasets.
The residential area (RA) covers a typical American residential area that contains single and
townhouses with an average height of 1∼2 floors.

All 3D point clouds are reconstructed using the commercial software – i.e., ContextCap-
ture. Each point is enriched with one of the six semantic class labels, including ground, man-

Figure 4: The class distribution of real-dataset of our STPLS3D. Note the logarithmic scale
for the vertical axis.

Citation
Citation
{Spicer, McAlinden, Conover, and Adelphi} 2016

WWW.STPLS3D.COM
www.stpls3d.com/data
https://youtu.be/6wYWVo6Cmfs
https://youtu.be/6wYWVo6Cmfs


STPLS3D: WWW.STPLS3D.COM 19

made structures (including outdoor furniture, construction equipment, site storage trailers,
etc.), trees, cars, light poles, and fences. Note that the raw point clouds are subsampled to
0.3 m point spacing for training and evaluating existing segmentation methods. The statistics
of the real-world dataset are also provided in Figure 4.

Synthetic Datasets Following the proposed data generation pipeline, we further gen-
erated a large-scale synthetic dataset with various landscapes (i.e., various terrain shapes,
types of vegetation, and urban density). It is composed of 62 point clouds and covers ap-
proximately 16 square kilometers of landscape. Additionally, the flight altitudes were set in
the range of 60m∼120m. Image overlaps were set in the range of 75%∼85%, and sunlight
directions were randomly assigned to simulate the data collection at different times in a day.
In particular, three versions of the synthetic datasets were generated with different focuses.

SyntheticV1. This dataset was created using limited game objects and composed of 7
semantic categories, including ground, building, vegetation, vehicle, light pole, street sign,
and clutter. In this version, we mainly focused on adding diversity for large objects. For
instance, details were added to the ground by randomly sculpting the input digital surface
model with simulated ditches, street gutters, speed bumps, etc. A large number of forests
were also added by placing trees in random polygons with different tree spacing.

SyntheticV2. In this version, we focused on adding diversity for the terrain shapes
and visual appearances, as well as the variation of the small objects. In particular, we se-
lected DSM with large slopes, enriched the game objects repository, and expanded the fine-
grained semantic categories. Low (0.5m <height<=2.0m), medium (2.0m<height<=5.0m)
and high (5.0m<height) vegetation class labels were adopted to separate different kinds of
vegetation following ASPRS specification [2]. Vehicles were further divided into passenger
cars (including sedan and hatchback cars) and trucks. Bikes, motorcycles, fences, roads, air-
craft, and military vehicles were also incorporated into the 3D scene generation process. A
procedural landscape material was also leveraged to automatically generate grass and rocky
textures based on the ground slope. The contextual relationship between objects was also
considered, where vehicles were placed on the roads and light poles, and street signs were
placed alongside the roads. Finally, it is noted that the instance annotations for specific
objects (e.g., cars, trees, buildings, bikes, etc.) were also introduced in this version.

SyntheticV3. In this version, we focused on large size building footprints to simulate
urban areas and increase the variation of the object materials. A database of materials (in-
cluding metal, rubber, signs, car paints, etc.) for small objects (such as vehicles, light poles,
street signs, bikes, motorcycles, etc.) was created. These materials were assigned to each ob-
ject during generation. We also exploited the off-the-shelf library of photogrammetry-based
textures – i.e., Quixel Megascans for changing materials of buildings and fences. Consid-
ering that simply assigning random materials to the facade of the building may reduce the
realism of the 3D environment, we first assigned the material categories (e.g., brick, concrete,
wood, etc.) to different building components (e.g., wall, roof, etc.). Next, individual mate-
rial was randomly selected for each building component from the given material category. In
particular, two new ground material labels (i.e., grass and dirt) were also introduced in this
version. Dirt texture was painted around the building footprints with a predefined buffer, and
grass texture was used to fill the blank areas that did not belong to dirt or road. The statistics
of different synthetic data are shown in Figure 5. we provide additional visualization of our
synthetic and real-world datasets in Figure 6.
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Figure 5: The class distribution of synthetic subsets of our STPLS3D. Note the logarithmic
scale for the vertical axis.

Figure 6: Examples of synthetic and real-world point clouds in our STPLS3D dataset. Dif-
ferent semantic classes are shown in different colors, as illustrated in the color legend. Note
that different instances are displayed in different random colors. Best viewed in color.

WWW.STPLS3D.COM


STPLS3D: WWW.STPLS3D.COM 21

C Comparison of Data Quality
As discussed in Section 3.2, directly sampling or ray casting point clouds from the 3D virtual
environment will lead to a large domain gap from the real photogrammetry data. Here,
we provide an intuitive comparison by visualizing the ray casting 3D points, the synthetic
photogrammetric points, and real-world photogrammetric points of tree crowns in Figure 7.
Additionally, the sectional view and volume density histogram is also reported.

It can be seen that: 1) From the sectional view, it is clear that points of the synthetic
ray-casted point clouds are scattered inside the tree crowns, while synthetic and real pho-
togrammetry point clouds exhibit hollow-shaped shells. 2) The volume density histograms
show that synthetic and real photogrammetry point clouds have much more similar point
distributions compared with the synthetic ray-casted point clouds. Overall, the point clouds
generated from our synthetic photogrammetry pipeline are closer to the real data. For com-
prehensive visualization, we also provide an anonymous video demo demonstrating the
quality and distribution of different point clouds generated by ray casting, synthetical pho-
togrammetry, and real photogrammetry. The video can be viewed at https://youtu.
be/4AjMWTgV2Ec.
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Figure 7: Qualitative comparison of tree crowns generated by ray-casted, synthetic pho-
togrammetry, and real photogrammetry.
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D Object placement principles for creating the synthetic
environment layouts

In this study, we empirically developed several simple yet effective parameterized scene lay-
out principles. 1) Placing vehicles, trucks, bikes, and motorcycles on the paved ground and
road based on the road width length with randomized intervals. 2) Placing city furniture
alongside the roads with parameterized buffer sizes. 3) Placing clusters of bikes, motor-
cycles, and small objects around buildings and fences. 4) Scatter polygons and rings with
random shapes and sizes to cover a parameterized percentage of the empty space and place
objects within the same category in each polygon and ring with the parameterized minimum
allowed distance. 5) Randomize the objects’ rotations and scales. By mixing and match-
ing these simple rules with parameters randomly sampled within reasonable ranges, unique
strategies can be created to produce scene layouts with a large diversity and a certain realism.

E Evaluation of the synthetic V1, V2, and V3

Table 5: Quantitative evaluation of different versions of the STPLS3D synthetic datasets
using real subsets as testing cases. Overall Accuracy (oAcc, %) and mean IoU (mIoU, %)
are reported.

.

RandLA-Net [35] SCF-Net [22] KPConv [72]
oAcc(%) mIoU(%) oAcc(%) mIoU(%) oAcc(%) mIoU(%)

V1 78.51 44.42 76.40 43.85 76.71 44.36
V2 80.86 46.67 80.46 46.77 84.18 53.88
V3 76.95 47.97 76.43 47.38 73.42 48.41

V12 86.25 50.41 86.31 53.37 85.75 51.43
V13 80.41 49.08 79.48 49.66 79.73 51.08
V23 84.32 51.07 85.41 52.15 85.45 55.82

V123 86.39 55.76 87.86 56.60 88.04 58.05

In Section 5.1, we have evaluated the segmentation performance of baseline networks on
our real-world dataset by training on the synthetical V1-V3 dataset. To further determine the
impact of different versions of the synthetic subset on the final segmentation performance, we
conducted the 7 groups of experiments as follows. Note that all groups of experiments were
tested on the real-world dataset but trained with synthetic datasets with different settings.

• Trained in synthetic V1 only.
• Trained in synthetic V2 only.
• Trained in synthetic V3 only.
• Trained in synthetic V1+V2.
• Trained in synthetic V1+V3.
• Trained in synthetic V2+V3.
• Trained in all the synthetic V1+V2+V3.

The quantitative performance evaluation of three baselines is shown in Table 5. It can be
seen that: 1) The overall performance of all baselines improved when training with the com-
binations of synthetic subsets, compared with training on the individual synthetic subset. 2)
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All baselines achieved the best performance when trained on all synthetic subsets, indicating
the positive impact of the synthetic datasets, especially when the real-world training data is
scarce or difficult to acquire.

F Evaluation on Synthetic V3 with 18 labels

Table 6: Quantitative results on the synthetic v3 subset.
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RandLA-Net [35] 67.52 94.11 39.42 46.84 96.32 82.39 82.45 66.72 70.02 21.72 56.54 78.27 40.22 55.25 78.50 80.64 59.28 80.37 86.22
SCF-Net [22] 69.07 93.31 45.40 49.40 96.51 82.17 83.08 68.28 71.93 22.29 57.98 80.99 45.27 63.06 79.29 79.97 57.63 80.79 85.86
KPConv [72] 70.35 96.18 35.17 47.88 97.04 86.44 84.24 75.35 72.26 23.09 57.59 86.65 43.07 62.69 85.60 81.82 67.23 79.29 84.68

Here, we evaluated the segmentation performance of three baseline networks (i.e., Kp-
Conv, RandLA-Net, SCF-Net) on the synthetic subset of our dataset. In light of the data
diversity and quality, we selected the SyntheticV3 dataset for evaluation. The quantitative
results achieved by different baselines are shown in Table 6. It can be seen that KPConv
achieved the best segmentation performance on the SyntheticV3 subset, with a mIoU score
of 70.35%, followed by the SCF-Net and RandLA-Net. We also noticed that all three base-
lines failed to achieve satisfactory performance on small objects such as low vegetation,
bikes, and street signs. This is likely because the geometry and texture details of these small
objects were lost during the 3D reconstruction in the photogrammetry process. Additionally,
the performance on the underrepresented categories such as medium vegetation is also far
from satisfactory, indicating learning from imbalanced class distribution remains a challeng-
ing problem for existing techniques.

G Instance Segmentation with Reduced Semantic Classes

Table 7: Quantitative evaluation of two instance segmentation baselines on the synthetic v3
subset with reduced semantic classes.
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HAIS[16]
AP 42.9 68.1 22.1 77.1 48.9 47.0 46.8 26.1 24.2 25.9

AP50 54.6 74.1 27.2 87.2 57.8 67.5 67.0 34.1 29.5 47.0
AP25 60.1 75.7 29.9 89.1 62.5 71.1 73.9 35.9 32.5 70.1

PointGroup[41]
AP 33.4 63.6 19.8 57.0 44.4 36.9 20.0 21.7 18.2 19.6

AP50 52.0 71.8 26.1 83.9 59.7 66.1 51.5 41.4 25.0 42.8
AP25 61.0 75.4 30.5 87.0 64.2 71.6 70.5 54.7 28.5 66.7

Since the instance segmentation performance depends on the quality of the semantic
segmentation results, We also provided an instance segmentation benchmark with reduced
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semantics by merging similar semantic classes to eliminate the cascade effect from poor
semantic segmentation. Specifically, low, medium, and high vegetation were merged into
the vegetation category. Bicycle and motorcycle points were labeled as bike. Trucks and
military vehicles were combined as large vehicles. The street signs were joined with light
poles. Thus, the semantics were reduced from 14 classes to 9 classes. PointGroup [41] and
HAIS [16] were used again as the baselines. The results are shown in Table 7. Both HAIS
and PointGroup achieved a higher AP (nearly 9%), which shows that if the semantic seg-
mentation capability for similar object classes could be improved in the end-to-end instance
segmentation networks, the performance of instance segmentation could also be increased.

H Data-Related Hyperparameters of Benchmark
Methods

To achieve a trade-off between data scale, resolution, and computing resources, we empiri-
cally set 0.3m for grid downsampling to reduce the number of total points while preserving
enough details. In addition, for voxel-based approaches, including MinkowskiNet, Point-
Group, and HAIS, we set the sample size of 50m×50m on the XY plane. We used a sample
size of 100m×100m for PointTransformer, an 18m radius of sphere for KpConv, and 40,960
input points for SCF-Net and RandLA-Net.

I Definition of Semantic Categories
Here, we provide a detailed definition of the semantic categories in our STPLS3D dataset.

SyntheticV1:

1. Ground: including grass, paved road, dirt, etc.
2. Building: including commercial, residential, educational buildings.
3. Vegetation: including low, medium, and high vegetation.
4. Vehicle: including sedan and hatchback cars.
5. Light pole: including light poles and traffic lights.
6. Street sign: including road signs at the side of roads.
7. Clutter: including city furniture, construction equipment, barricades, and other 3D

shapes.

SyntheticV2:

1. Building: Same as the definition of building in SyntheticV1.
2. Low vegetation: 0.5 m < vegetation height < 2.0 m.
3. Medium vegetation: 2.0 m < vegetation height < 5.0 m.
4. High vegetation: 5.0 m < vegetation height.
5. Passenger car: including sedans and hatchback cars.
6. Truck: including pickup trucks, cement trucks, flat-bed trailers, trailer trucks, etc.
7. Aircraft: including helicopters and airplanes
8. Military vehicle: including tanks and Humvees.
9. Bike: bicycles.

10. Motorcycle: motorcycles.
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11. Light pole: Same as the definition of light pole in SyntheticV1.
12. Street sign: Same as the definition of street sign in SyntheticV1.
13. Clutter: Same as the definition of clutter in SyntheticV1.
14. Fence: including timber, brick, concrete, metal fences.
15. Road: including asphalt and concrete roads.
16. Grass: including grass lawn, wild grass, etc.

SyntheticV3:

16. Window: glass windows.
17. Dirt: bare earth.
18. Grass: Same as the definition of grass in SyntheticV2.

Note that, the definition of classes 1 to 15 is the same as SyntheticV2.

Real-world data:

1. Ground: including grass, paved roads, dirt, sidewalk, parking lots, etc.
2. Tree: including low, medium, and high vegetation.
3. Car: including sedans and hatchback cars, pickup trucks, flatbed trailers, trailer trucks,

etc.
4. Light pole: including light poles, traffic lights, and street signs.
5. Fence: including timber, brick, concrete, metal fences.
6. Building (man-made structure): Including buildings, city furniture, construction equip-

ment, site storage trailers, etc. (i.e., Objects that do not belong to ground, tree, car,
light pole, and fence.)

J Class mapping between synthetic and real data
Considering that the semantic categories of the synthetic datasets are inconsistent with the
real-world dataset (18 vs. 6), we conducted a class mapping to unify the semantic categories
for the experiments discussed in 5.1. Specifically, road, dirt, and grass points were combined
as ground. Low, medium and high vegetation were merged into the vegetation category.
Cars, trucks, and military vehicles were labeled as vehicles. The street sign was joined with
light poles, and all other objects except fences were merged with buildings as man-made
structures.

K Visualization of the FDc dataset
To have an intuitive and clear understanding of the FDc data, we visualize the 3D point cloud
along with its annotations in Figure 8.
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Figure 8: Example visualization of the FDc dataset.
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