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ABSTRACT

The emerging area of bioelectric signal compressive sens-
ing(CS) has shown great potential in health care applications.
However, improving the reconstruction accuracy of com-
pressively sensed bioelectric signals remains a challenging
problem. In recent years, data-driven image CS methods
have achieved significant improvements in reconstruction ac-
curacy over conventional model-based image CS methods.
In this paper, we conduct an experimental study on trans-
ferring existing data-driven image CS methods to bioelectric
signals. Through our investigation of five critical factors af-
fecting the reconstruction performance of bioelectric signals,
we conclude that existing data-driven image CS methods
can be transferred to ECG signals with high reconstruction
accuracy. Our experimental results show that transferred
data-driven image CS methods can achieve up to 8.08-2.73
SNR improvement over the reference method on ECG signal
reconstruction across compression ratios of 2-8x.

Index Terms— compressive sensing, bioelectric signal,
deep learning

1. INTRODUCTION

The emerging area of bioelectric signal compressive sens-

ing(CS) has shown great potential in health care applications[1].

Most existing CS reconstruction methods of bioelectric sig-
nals are model-based methods built upon handcrafted signal
priors[2, 3]. Since the model of bioelectric signals is not yet
well understood, the handcrafted signal priors may not suffi-
ciently reflect the actual data distribution of signals, leading
to limited reconstruction performance of model-based meth-
ods, which is a challenging problem that hinders real-world
applications.

In recent years, data-driven image CS methods[4, 5, 6, 7]
have achieved great success in reconstructing images sensed
even at high compression ratios. By utilizing neural networks
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to learn a signal prior from data as well as directly recon-
struct the signals in an end-to-end fashion, the reconstruction
accuracy of data-driven image CS methods has significantly
improved over that of conventional model-based image CS
methods[8, 9, 10] as shown in [11].

In this paper, we propose to address the problem by trans-
ferring existing data-driven image CS methods to bioelec-
tric signals to improve reconstruction accuracy. We identify
and investigate five critical factors that affect the reconstruc-
tion performance of transferred methods: 1. dimensional-
ity of convolutional layers. 2. pre-training on images. 3.
length of signal samples. 4. network structures. 5. bio-
electric signal types. By conducting experiments on three
public datasets of ECG, EEG, and EMG signals with four
existing data-driven image CS methods, we draw the con-
clusion that existing data-driven image CS methods can be
transferred to ECG signals with high reconstruction accuracy.
Our experiment results show that transferred data-driven im-
age CS methods can achieve up to 8.08-2.73 SNR improve-
ment over the reference method on ECG signal reconstruction
across compression ratios of 2-8x.

Our contributions are summarized as follows:

* We propose a novel approach to address the problem
of limited reconstruction accuracy in bioelectric signals
by transferring data-driven image CS methods to this
domain. The proposed approach shows a significant re-
construction accuracy improvement over the reference
method on ECG signals.

* To the best of our knowledge, we are the first to empir-
ically study the problem of transferring data-driven im-
age CS methods to bioelectric signals. By investigating
five critical factors that impact the reconstruction per-
formance of transferred methods, we derive the optimal
conditions to maximize the reconstruction performance
of transferred methods.

2. RELATED WORK

Most existing CS reconstruction methods on bioelectric sig-
nals are model-based. [2] provides a detailed review on ex-
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isting model-based CS reconstruction methods for bioelectric
signals. [3] provides a more recent review on existing CS
reconstruction approaches for EEG signals. [12] provides a
thorough survey on existing deep-learning-based CS recon-
struction methods in various domains. To the best of our
knowledge, the most recent study on applying neural net-
works to bioelectric signals is [13]. [13] employs a neural
network to first estimate the support of a reconstructed signal
then estimate the coefficients by pseudo-inversion. Our work
differs from [13] in the fact that we reconstruct signals in an
end-to-end manner using neural networks.

3. EXPERIMENTS

We investigate five critical factors that affect the recon-
struction performance of a transferred data-driven image CS
method: 1. dimensionality of convolutional layers. 2. pre-
training on images. 3. length of signal samples. 4. network
structures. 5. bioelectric signal types.

We conduct experiments on three public datasets corre-
sponding to three types of bioelectrical signals: MITBIH[14]
for ECG signals, BCI-IV 2a(EEG)[15] for EEG signals and
NinaPro D3(EMG)[16] for EMG signals. Each dataset con-
sists of multiple records corresponding to multiple subjects.
Each record is represented as a multi-channel time series. We
first divide the records into training sets, validation sets, and
testing sets, as shown in Table 1. Then, each channel of a
time series is further segmented into signal samples of equal
length. As such, we transform each raw dataset consisting of
signal records into a dataset consisting of signal samples of
equal length. The details of the composed dataset are shown
in Table 1. The reconstruction accuracy is measured as aver-
aged signal-to-noise ratios (SNR) over a testing set.

We experiment with four existing data-driven image CS
methods: ReconNet[4], DR2-Net[5], LAPRAN|[7] and ISTA-
Net[6]. The methods are implemented based on the source
code released by the original authors and the source code
from OpenICS[11] toolbox. Unless particularly specified, the
training strategies are consistent with the strategies proposed
by the original authors of the methods.

3.1. Dimensionality of Convolutional Layers

Since bioelectrical signals are mostly represented as 1D time-
series data, we first investigate whether a 1D CNN is more
applicable than a 2D CNN for signal reconstruction. We use
ReconNet to conduct the reconstruction experiments on ECG
signals at four compression ratios from 2 to 16. The sample
length is set to 1024.

ReconNet can be directly trained to reconstruct square im-
ages. To feed 1D signal samples into ReconNet, the 1D sig-
nal samples of length 1024 are first reshaped into 32x32 ten-
sors. The reconstruction outputs are reshaped back to 1D vec-
tors of length 1024 for processing. To construct a 1D CNN,

Table 1. Details of the composed datasets. Record Index:
the indices of records in the original dataset. Percent: the
proportion of each type of dataset. Total: Total number of
samples in each composed dataset. The sample length is set
to 1024.

Dataset | Type | Record Index | Percent | Total
Train The rest 71%
MITBIH 101, 104, 105 60864
Val 122,203, 212 19%
231, 233,234
112, 113, 205
Test 21,222 10%
Train The rest 66%
BCZI:V va | AOTEAOTT | 293900
AO8E, AOST
Test AO9E, AQ9T 11%
NinaPro Train The rest 74%
D3 Val S9_E{1-3}_Al 17% 674676
S10_E{1-3}_Al
Test | S11_E{1-3}_Al 9%

Table 2. The reconstruction accuracy comparison between
the 1D CNN and 2D CNN on ECG signals. CR: compression
ratio. 1D: ReconNet-1D. 2D: ReconNet.

CR | 2 4 8 16
ID | 1845 | 16.84 | 13.12 | 9.48
2D | 19.86 | 17.52 | 12.11 | 9.50

we replace the existing 2D convolutional layers in ReconNet
with 1D convolutional layers. Specifically, each 2D convo-
lutional layer in ReconNet of size nxn with padding size of
”T_l is converted to an 1D convolutional layer of size n? with
padding size of n’=1 {0 ensure the output size remains the
same as input size. As such, each sensed signal sample can
be directly fed into 1D CNN for reconstruction. We denote
the constructed 1D CNN network as ReconNet-1D.

The experimental results are shown in Table 2. ReconNet
and ReconNet-1D have roughly the same reconstruction accu-
racy on all compression ratios. The average SNR difference
of ReconNet over ReconNet-1D is 0.27 dB. The experimen-
tal results show that converting a 2D CNN to a 1D CNN does
not bring consistent reconstruction accuracy improvements.
Thus, we conclude that this conversion is not necessary for
improving reconstruction accuracy.

3.2. Pretraining on Images

We then investigate whether pretraining on image datasets
can bring improvements in reconstruction accuracy. We use
MNIST[17] and CIFARI10[18] as the pretrain datasets. The

1192

Authorized licensed use limited to: ASU Library. Downloaded on August 05,2022 at 00:22:09 UTC from IEEE Xplore. Restrictions apply.



Table 3. The reconstruction accuracy comparison between
pretrained networks and networks trained from scratch on
ECG signals. CR: compression ratio. Scratch: networks
trained on the ECG dataset from scratch. CIFAR10/MNIST:
networks pretrained on CIFAR10/MNIST then finetuned on
the ECG dataset.

CR 2 4 8 16
Scratch | 21.18 | 20.38 | 15.07 | 10.41

ReconNet | CIFARI10 | 19.92 | 18.04 | 13.27 | 9.98
MNIST | 18.51 | 16.70 | 12.83 | 9.64
Scratch | 25.83 | 20.92 | 14.90 | 10.82
DR2-Net | CIFARI10 | 24.97 | 20.73 | 14.20 | 10.75
MNIST | 23.36 | 19.99 | 14.03 | 10.65

Table 4. The reconstruction accuracy comparison over differ-
ent sample lengths.

Sample Length 16 64 256 1024
ReconNet 21.99 | 19.18 | 15.15 | 14.74
DR2-Net 21.14 | 2042 | 15.61 | 13.24

experimented methods are ReconNet and DR2-Net. The sam-
ple length is set to 1024. The compression ratios are 2-16x.
The experiment results are in Table 3.

As Table 3 shows, pretrained networks have consis-
tently lower reconstruction accuracy than the same networks
trained from scratch. On average, the network pretrained on
MNIST/CIFAR10 has 1.73dB/0.96dB lower reconstruction
SNR than the same network trained from scratch. Thus we
conclude the pretraining data-driven image CS methods for
transferring to bioelectric signal reconstruction is not neces-
sary.

3.3. Length of Signal Samples

We further investigate how sample length of signals affects
the reconstruction accuracy of transferred methods. The
comparison is conducted with ReconNet and DR2-Net on
the ECG dataset. Four different sample lengths are tested:
16, 64, 256, and 1024. All samples are first reshaped to
square 2D tensors to adapt to the input size of networks. The
compression ratios we tested are 2-16x.

The experiment results of ReconNet are plotted in Fig 1.
The average reconstruction accuracy across different sam-
ple lengths is in Table 4. As Fig 1 shows, lower sample
length leads to consistently higher reconstruction accuracy at
all compression ratios. On average, the reconstruction SNR
at sample length of 16 is 7.57 dB higher than it at sample
length of 1024. This is strong evidence that one should al-
ways use the lowest possible sample length when transferring
data-driven image CS methods to bioelectric signals.

To., Sample Length
25- e

20-

SNR

2 4 6 8 10 12 14 16
Compression Ratio

Fig. 1. The reconstruction accuracy comparison between dif-
ferent sample lengths on the ECG dataset. Network: Recon-
Net.

Network Structure
ST\ I S S (S S A R B - ReconNet
30 \ - — = DR2-Net
\ — — - LAPRAN
\ ISTA-Net
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10-
2 4 6 8 10 12 14 16
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Fig. 2. The reconstruction accuracy comparison between dif-
ferent network structures.

3.4. Network Structures

The network structures have the highest impact on the recon-
struction accuracy among all previous factors we investigate.
We set the sample length to 1024 and experiment with four
different network structures: ReconNet, DR2-Net, LAPRAN
and ISTA-Net on ECG dataset. The experiment results are
plotted in Fig 2.

As shown by Fig 2, ISTA-Net consistently outperforms
all other network structures at all compression ratios. At the
compression ratio of 2, the reconstruction SNR of ISTA-Net
is 33.03 dB, which is the highest SNR among all the data-
driven image CS methods we experimented with. To reveal
the true impact of neural networks, we compare ISTA-Net
against CTSMD[19] which is the state-of-the-art approach
without neural networks for ECG signal CS reconstruction.
As shown in Table 5, ISTA-Net achieves an average SNR im-
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Table 5. The reconstruction accuracy comparison between
ISTA-Net and CTSMD method.

CR 2 4 8
CTSMD | 2495 | 20.01 | 15.05
ISTA-Net | 33.03 | 26.06 | 17.78

Table 6. The reconstruction accuracy comparison between
ReconNet, DR2-Net, and DCT-LBCS methods on EEG and
EMG datasets.

CR 2 4 8
DCT-LBCS | 17.06 | 13.56 | 9.44
EEG ReconNet 12.105 | 7.70 | 4.06
DR2-Net 12.87 8.80 | 4.29
DCT-LBCS | 22.09 9.00 | 4.23
EMG | ReconNet 14.31 496 | 2.66
DR2-Net 15.01 5.65 | 2.14

provement of 5.62 dB over CTSMD at compression ratios of
2-8x. This is strong evidence that data-driven image CS meth-
ods can be generally transferred for bioelectric signal recon-
struction.

3.5. Bioelectric Signal Types

Finally, we study how the type of bioelectric signals affects
the reconstruction performance of a transferred method. We
conduct experiments on ECG, EEG, and EMG signals with
ReconNet and DR2-Net. The sample length is set to 16. Due
to the fact that EEG and EMG signals are geometrically more
complicated and less periodic than ECG signals, as shown in
Fig 3, the reconstruction accuracy on EEG and EMG signals
are largely reduced compared with the reconstruction accu-
racy on ECG signals. We take DCT-LBCS[20] as the state-of-
the-art approach without neural networks on EEG and EMG
signal reconstruction. The comparison results are in Table 6.

As shown in Table 6, ReconNet and DR2-Net have an av-
erage of 5.39/4.46 dB and 4.7/4.17 dB reconstruction SNR re-
duction than the reference method DCT-LBCS on EEG/EMG
dataset, respectively. We further visually compare the recon-
struction quality of ECG, EEG, and EMG signals. As shown
in Fig 3, EEG and EMG signals have much more geometri-
cal details(in terms of the number of peaks and valleys) than
ECG signals. Reconstruction errors mostly occur in geomet-
rically complicated areas. Based on the experimental results,
we conclude that existing data-driven image CS methods are
insufficient to be transferred for EEG and EMG signal recon-
struction.
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Fig. 3. Visual quality comparison of reconstructed sig-

nals. The compression ratio is 2. Blue/Orange line: origi-
nal/reconstructed signal. From top to bottom: 1. ECG signal
reconstructed with DR2-Net. SNR: 26.63 dB. 2. EMG signal
reconstructed with DCT-LBCS. SNR: 21.05 dB. 3. EMG sig-
nal reconstructed with DR2-Net. SNR: 12.67 dB. 4. EEG
signal reconstructed with DCT-LBCS. SNR: 8.45 dB 5. EEG
signal reconstructed with DR2-Net. SNR: 7.66 dB

4. CONCLUSION

In this paper, we conduct an experimental study on transfer-
ring data-driven image CS methods to bioelectric signals to
address the problem of low reconstruction accuracy. By iden-
tifying and conducting experiments to study five critical fac-
tors that affect the reconstruction performance of transferred
methods, we conclude that data-driven image CS methods
can be generally transferred to ECG signals with high recon-
struction performance. On EEG and EMG signals, existing
data-driven image CS methods are insufficient to reconstruct
geometric details at fine granularity. We leave the study of
improving reconstruction accuracy of data-driven image CS
methods on EEG and EMG signals to future work.
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