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Abstract—The scene text interpretation is a critical part
of natural scene interpretation. Currently, most of the exist-
ing work is based on high-end GPU implementation, which
is commonly used on the server side. However, in loT ap-
plication scenarios, the communication overhead from the
edge device to the server is quite large, which sometimes
even dominates the total processing time. Hence, the edge-
computing oriented design is needed to solve this problem.
In this paper, we present an architectural design and im-
plementation of a natural scene text interpretation (NSTI)
accelerator, which can classify and localize the text region
on pixel-level efficiently in real-time on mobile devices.
To target the real-time and low-latency processing, the Bi-
nary Convolutional Encoder-decoder Network (B-CEDNet)
is adopted as the core architecture to enable massive
parallelism due to its binary feature. Massively parallelized
computations and a highly pipelined data flow control en-
hance its latency and throughput performance. In addition,
all the binarized intermediate results and parameters are
stored on chip to eliminate the power consumption and
latency overhead of the off-chip communication. The NSTI
accelerator is implemented in a 40nm CMOS technology,
which can process scene text images (size of 128 x32) at 34
fps and latency of 40 ms for pixelwise interpretation with
the pixelwise classification accuracy over 90% on ICDAR-
03 and ICDAR-13 dataset. The real energy-efficiency is 698
GOP/s/W and the peak energy-efficiency can get up to
7825 GOP/s/W. The proposed accelerator is 7x more en-
ergy efficient than its optimized GPU-based implementation
counterpart, while maintaining a real-time throughput with
latency of 40 ms.
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Mobile applications, Neural network hardware, Real-time
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Fig. 1. Natural scene text interpretation system.
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[. INTRODUCTION

HE scene text interpretation is a critical part of natural
scene interpretation, since the text probably contains
more explicit information than the natural object. For instance,
in a driving scenario, besides the standard road signs, text-
based guide signs are essential in predicting the demand of
lane changing. In a walking scenario, the name of the building
or the store can help to make precise and reliable localization.
Conventionally, text recognition has been vastly investigated
for document images [1]. However, in the natural scene, the
background is much more complicated than that of the docu-
ment images, which makes the scene text recognition become a
more challenging task. With the recent development in neural
networks and deep learning [2] [3], the accuracy of natural
scene text recognition has outperformed the traditional feature
selection methods by using features selected automatically
[4] [5]. The related work can be categorized as character-
level based and word-level based solutions. The character-
level based solutions [6] [7] detect and recognize character
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Fig. 2. Comparison of different levels of natural scene text processing.

one at a time. Its front-end is a sliding window approach for
character proposals, which makes it suffer from the processing
time. The word-level based solution [8] requests large fully-
connected layer to generate the probability for thousands
of word classes, which place a heavy burden on memory
access. The shared limitation of either character-level [6] [7]
or word-level based [8] solutions is that their architecture
is not capable of achieving a low-latency performance. In
[9], it performs one-shot text interpretation with a binary
convolutional encoder-decoder network (B-CEDNet). Since
most of the computation in B-CEDNet are bitwise operations,
it opens a new opportunity for hardware acceleration.

However, all the previous work mentioned above is im-
plemented by high-end GPUs (such as Nvidia Titan X). The
power-hungry high-end GPUs are not able to be deployed on
energy-constrained mobile devices. If GPUs are deployed on
the server side, the communication overhead from a client to
a cloud server is quite large, which sometimes even dominates
the total processing time. However, long latency is not tolerant
in augmented reality (AR) applications. If one chooses to use
low-power oriented GPUs, such as Nvidia Tegra X1, on the
power constrained edge devices, it will get 20x performance
(in terms of Flops) degradation compared with the Nvidia
Titan X GPU [10]. Considering the performance degradation
factor, the frame rate in [9] will drop from 200 fps to 20 fps
when it is mapped onto a Tegra X1. As such, it cannot maintain
a real-time throughput on a lower-power GPU. In addition, the
power consumption of a Tegra X1 is 6W [10], which is still
too power hungry for a smartphone. Hence, an edge-computing
oriented design is needed to solve this problem.

In this paper, in order to target a low-latency and real-time
processor for energy-efficient natural scene text processing on
mobile devices, we propose an ASIC B-CEDNet-based natural
scene text interpretation (NSTI) accelerator. As shown in Fig.
1, the processor takes the cropped natural scene image as the
input and outputs a map of pixelwise classification results
with the same size as input. In comparison with generating
a bounding box for each character or the entire word (as
shown in Fig. 2 (b) and (c)), the pixelwise classification output
(in Fig. 2 (a)) shows morphological boundary, which is much
more user-friendly in AR applications. Compared with binary
classification results for the text and non-text regions in Fig. 2

(d), the proposed processor can identify different characters in
a one-shot prediction. In addition, with the localization, mor-
phological and categorized information, it largely alleviates
the workload for the back-end word-level prediction and even
scene description as shown in Fig. 1. The bitwise operation
dominated computation in B-CEDNet enables massive par-
allelism of multiply-add operations (MACs) in the proposed
processor. The binarized parameters and intermediate results
are fully mapped on chip to eliminate the communication cost
(regarding power consumption) instead of loading them from
off-chip memory.

The rest of the paper is organized as follows: Section II
discusses the Convolutional encoder-decoder network (CED-
Net) and its binary counterpart B-CEDNet from the algorithm
perspective. Then Section III presents the hierarchical design
of the ASIC NSTT accelerator. Section IV illustrates the imple-
mentation details of NSTI accelerator. Section V discusses the
performance results of the accelerator. Finally, the last Section
VI concludes the paper.

Il. PRELIMINARY

In this section, Section A discusses the CEDNet architecture
for pixelwise interpretation from the algorithm perspective.
Then Section B introduces its binary counterpart, the B-
CEDNet architecture. Section B emphasizes the differences
between two architectures and explains how its binary feature
brings new opportunity for the hardware acceleration.

A. Convolutional encoder-decoder network (CEDNet)

Conventionally convolutional neural networks (CNNs) are
used for image classification tasks [11]-[13]. Generally, they
are composed of convolutional layers, pooling layers, and
fully-connected layers [16]. To perform image classification,
the network only generates one prediction for the entire image.
Therefore, CNNs cannot be directly deployed for the pixelwise
interpretation of images. In Fig. 3, the convolutional encoder-
decoder network (CEDNet) is proposed in [14] for the multi-
class pixelwise classification. A CEDNet takes the scene text
images as input. The body of the network can be divided
into the encoder part and decoder part. The output of the
CEDNet is a salience map S € RWrxHrxC which contains
the probability information of each pixel over C' categories
(including one background class), where C is 27 in our case
(characters are case insensitive). The encoder part is a stack
of encoder blocks, while the decoder is a stack of decoder
blocks. Each encoder block contains a convolutional (Conv)
layer, a pooling layer (PL), a batch normalization (BN) layer
and a rectified linear unit (ReLU) layer. The convolutional
layer applies convolutional operations on input feature map
ap—1 € RWr-1xHr-1xDi-1 yith trainable weight matrix
wy € RWe>*MxDexXDk \where the subscript k indicates the
k" block. The convolutional operations can be formulated as

wy hr Dr—1

Sk((E,]J,Z) = ZZ Z U)k(’i,j,l,Z)

i=1j=1 [=1
*ak—l(i+x717j+y717l)7 (1)
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where s, € RWr*HexDk jg the output of k' Conv layer.
Equation (1) shows that the computation of s; along three
dimensions has no data dependence, which can be highly
paralleled in an ASIC implementation. The Conv layer is
intended to extract high-level features, which are critical for
the pixelwise classification. In the PL layer, it pools out the
critical information and eliminates the non-critical one. The
PL layer can perform either max pooling or average pooling
[11]. A max-pooling layer is shown in Fig. 4, it pools out
the maximum value in each 2 x 2 window. By introducing
the pooling layer, the size of the feature map is shrinking as
the network goes deeper. The BN layer is mainly used for
accelerating training process [15]. So in the inference stage,
the BN layer is also applied to match the training process
forming a stable distribution of the activations (ay ). The output
of k' BN layer is represented as follows:

Sk(x7 Y, Z) B M(xa Y, Z)
o%(z,y,2) +€
+6(z,y,2), (2

where 11 and o is the mean and variance over the mini-batch
training data, while v and §3 are trainable scaling factors. The
activation function is a nonlinear transformation. The most
commonly used activation function [11], ReLU function is
represented as

ak,(xayVZ)Z 7(I7yvz)

0,ar(z,y,2) <0

e {am,y,z),ak(x,y,z) >0 @

The entire encoder part is similar to a CNN without fully-
connected layers.

Since the output salience map is desired to be the same size
as the input, in the decoder part, each decoder block substitutes
the pooling layer with the up-pooling layer. As shown in
Fig. 4, the up-pooling (UPL) layer pools back the maximum
value to the same index in corresponding max-pooling layer.
As such, the output salience map can represent the same
localized information as the input. In order to predict the
pixelwise character appearance probability, the output block
replaces the ReLU function with softmax function. As shown
in the rightmost part of Fig. 3, it only plots the salient map
slices for character “A”, “D” and “S”. The lighter color code
means higher confidence level and vice versa. The CEDNet
architecture can enable highly parallelized MAC computing
inside every encoder or decoder block. It eliminates both the
run-time bottle stage in sliding window-based proposal and
the computation-intensive fully-connected layer.

B. Binary convolutional encoder-decoder network (B-
CEDNet)

Even though the mobile devices are getting more and more
computing power, it is still hard to deploy full-precision CNNs
for efficient computing on mobile edge devices. Since the
CNN architecture is proved to have huge redundancy [16],
different methods [17]-[21] have been proposed to reduce
the computation complexity and/or alleviate the memory ac-
cess issues. Some approaches [20] focus on minimizing total
number of parameters, which mainly alleviate the memory
access issues. While other approaches [17]-[19], [21] reduce
the precision of weights and activations, which can both
reduce the computation complexity and alleviate the memory
access issues. Among these approaches, binarization [18],
[19], [22] can push the weights and activations to be rep-
resented in binary format w) € {0, 1}Wr*HexDixDi - anqd
ab_, € {0,1}Wk-1>Hi-1xDi—1 It can achieve up to 32x
memory saving and converting the convolution operations to
bitwise XNOR operations for much more efficient computing.
It has been proved in [9], binarization approach can be adopted
in CEDNet to build a binary convolutional encoder-decoder
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Fig. 5. Architecture of the binary convolutional encoder-decoder network (B-CEDNet).

network (B-CEDNet as shown in Fig. 5) for pixelwise text
classification with merely no accuracy drop.

In the B-CEDNet, it replaces the Conv layer and ReL.U
layer with the binary convolutional layer (BinConv layer) and
Binarization layer (Binrz layer), respectively. The equation for
the BinConv layer and Binrz layer is shown in (4) and (5),
respectively.

Wi hk Dk 1

l'y, ZZZ wij,l,z)
=1 j=1 I=1
Gah_i(i+z—1,j+y—1,0) 4)
S T 5)
+1, ax(z,y,2) >0

The most costly computation, full-precision multiplication,
is now converted into the hardware-friendly bitwise XNOR
operation. For GPU implementation, one MAC module can
process 32-bit bitwise XNOR instead of one 32-bit multiply-
add operation. For FPGA implementation, the BinConv layer
is no longer needed to be implemented in DSP slices. Mas-
sive LUTs can be used for efficiently implementing bitwise
operations. For ASIC implementation, it is flexible enough to
build tailored computing units for a BinConv layer with tree-
like bitwise XNOR and bit-count logics. With simplified basic
computing units, it is able to map massive computing units to
target a high system throughput.

B-CEDNet has brought new opportunity in energy-efficient
edge-computing applications. Compared with power-hungry
GPU-based solutions and overhead of routing in FPGA-
based solutions, a tailored ASIC solution for B-CEDNet can
be the most energy efficient solution with high throughput
performance. It is able to satisfy the need for real-time and
low-latency processing in power-constrained edge-computing
device for scene text interpretation.

[1l. ARCHITECTURE DESIGN

Most existing ASIC/FPGA-based CNN accelerators are only
compatible with encoder blocks (down-sampling trend) for
image classification, recognition and detection tasks [23], [24].
While some optimize designs for decoder blocks (up-sampling

trend) for super resolution applications [25]. The proposed ar-
chitecture is customized for the convolutional encoder-decoder
network. The Fig. 6 shows the ASIC architecture of the
proposed Natural Scene Text Interpretation (NSTI) accelerator.
The NSTT accelerator takes the scene text image from the off-
chip DRAM as the input. Then it is processed through com-
puting blocks in a streaming manner. The computing blocks,
Block-0 to Block-10, are corresponding to 11 blocks in Fig.
5. Each computing block is built upon a processing element
(PE) array, as shown in the right half of the Fig. 6. Each
PE performs the operations of convolution, max-pooling/un-
pooling, activation function and batch normalization. The
spatial parallelism of the NSTI accelerator is reflected on
the block level, PE level and sub-PE level. The temporal
parallelism is reflected in highly pipelined steaming data flow.
Both massive spatial parallelism and temporal parallelism
enable high throughput performance of the proposed NSTI
accelerator. Reduction in computation complexity to bit-level
operations benefits in power saving. Storing all the weights
(w®) and intermediate results (a”) on chip to minimize off-chip
communication gives extra credits to energy saving. In this
section, Section A illustrates the details in computing blocks
hierarchically. Section B demonstrates the design considera-
tion for the memory. The dataflow control is then presented
in Section C.

A. Processing elements (PEs)

Each computing block in Fig. 6 performs the computation
corresponding to Fig. 5. Therefore, Block-1 to Block-4 and
Block-5 to Block-8 are identical, respectively. Although the
functions vary among these blocks, the structure inside each
block is the same as shown in Fig. 6. In each block, PE arrays
take the feature map a271 from previous layers and weight
w,’i values from its local memory (ROM) as the inputs, and
output the feature map az of the current layer. All the PEs in
the same block work simultaneously. The differences among
these blocks exist in their processing elements (PEs).

The PEs of encoder and decoder are shown in Fig. 7. The
PE of the encoder in Fig. 7(a) has 4 BinConv kernels, a PL
kernel and a BN-Binrz kernel, while the PE of the decoder in
Fig. 7(b) has a BinConv kernel, an UPL (un-pooling) kernel
and a BN-Binrz kernel. For the convenience of the ASIC
implementation, we group the UPL layer in block k£ + 1 to
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block k in building the computing block. Therefore, in each
decoder PE, it starts with a BinConv kernel and ends with
an UPL kernel. If BinConv kernels in an encoder PE are
substituted with Conv kernels, it becomes a PE for the adapter.
BinConv kernels in Fig. 7(a) and Conv kernels of the adapter
are both implemented in a tree-like structure as shown in Fig.
8. A Conv kernel has a floating-point operation on each node,
while a BinConv kernel performs bit-level XNOR and bit-
count. They both are implemented by pure combinational log-
ics. In each Conv/BinConv kernel, it computes one si(x,y, z)
at a time, that is to say, the parallelism factor in terms of
number of operations is wg X hyp X Dj. The computation
of the BN and Binrz layer can be simplified as a threshold
function [26], which can be implemented by a single 2-input
comparator, denoted as BN-Binrz kernel in Fig. 7. The PL
kernel is implemented with a 4-input comparator, which also
encodes the index of the maximum value in pooling region.
The pooled out value and its index are stored in buffer. Then
feed them into the UPL kernel in its symmetric decoder block
as shown in Fig. 6. The DEMUX in the UPL kernel of Fig.
7(b) writes back the (pooled maximum) value with the index

(a) BinConv kernel in the encoder and the decoder

Conv Kernel
(full precision)

(b) Conv kernel in the adaptor

Fig. 8. BinConv kernel and Conv kernel.

information to the right location in the RAM. The up-pooled
data in the buffer serves as the input of next decoder block.

B. Memory design

In DL-based ASIC designs [27]-[29], the communication
to the off-chip DRAM is very power-intensive. The binary
feature of B-CEDNet enable us to store all the weights (w?)
and intermediate results (a’) on chip to minimize off-chip
communication for energy saving. As shown in Table 1, the
first and second column indicates the memory size of weight
values in the non-binary case (CEDNet) and binary case (B-
CEDNet), respectively. The total memory size of weights in
the B-CEDNet has 30x saving, comparing with the non-binary
one. The ideal memory saving results from converting full-
precision network (32 bits) to binarized-weight network should
be 32x. Since the first layer still has non-binary weights, the
real compression ratio is a little bit less than the ideal case.
2,144 KB distributed ROMs are built to store all weight values,
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as shown in Fig. 6. In a PE array, each PE has its local ROM
attached. This can alleviate the routing issue in the bottom-up
design flow. There are total 423 KB binarized intermediate
results a® between blocks. Since the size of a’ is relatively
small, synthesized shift registers are used to buffer a’. This
can enable global voltage scaling with the core computing
part to get a more energy efficient point in chip testing stage.
172 KB Block SRAMs (hard macros) are used between the
encoder block (Block-1, -2 and -3) and its symmetric decoder
block (Block-5, -6 and -7) to buffer the pooling index. For the
innermost block, Block-4, we directly up-pool the outputs of
the max-pooling layer. As such, there is no need to store the
pooling index of block 4.

C. Dataflow control

In Fig. 9, it shows the data flow control across different
blocks. Since all the layers share the same depth, we can
simplify it as a 2-D B-CEDNet in the following discussion.
In a BinConv layer, the filter size of the weight matrix is 3x3
and the stride is equal to 1. While in a PL layer, the filter size
is 2x2 and the stride is equal to 2. In an encoder block, since
we have group 4 BinConv kernels and its corresponding PL
kernel into one PE (as shown in Fig. 7(a)), the size of sliding
window should be 4x4. In the decoder case, the size of the
sliding window is 3x3 with only one BinConv PE.

The color code is in Fig. 9 indicates the location of the
sliding window regarding to the clock cycle. Each sliding
window is located by the pixel of its upper-left corner. In
the first pixel of each row, the reference time is defined as
TR, where R is the row index. We keep reusing the same
feature map region (where the red sliding window is) at time
Tr and process it with different weight values. In order to

maximize the data reuse, we buffer (F — 1) x Wy_; + F
pixels at a time, where the size of the sliding window is F'x F'.
The buffered data in Fig. 9 are in relatively high brightness.
Feature map reuse helps to reduce the frequency of fetching
new (feature map) data, which will result in energy saving.
After T cycles, the window slides to the right with the stride
equal to 1. All the pixels with non-white color codes indicate
the PEs are active. In the active mode, the PEs read in new data
from the previous block, execute the computation and write the
processed data to the next block. Since PEs are implemented
by combinational logics, once the buffered data is ready, the
current block produces valid results simultaneously. All the
other pixels in the white color code indicate the PEs are idle,
where the PEs only reads new data into the buffer. As shown
in Fig. 9, the PEs are active in 1/2, 1/4 and 1/8 of total time in
the encoder block k — 2, k — 1 and k, respectively. In order to
maximize the utilization of PEs (active time ratio of PEs), we
assign 4x, 2x and 1x number of PEs, accordingly. Similarly,
in the decoder block k£ 4+ 1, k + 2 and k + 3, number of PEs
increases as 1x, 2x and 4x. Therefore, the proposed data
flow control makes all the computing blocks work in a highly
pipelined fashion, which enhances the throughput performance
of the NSTI accelerator.

IV. CHIP IMPLEMENTATION

The configuration of the B-CEDNet is the same as [9]. The
chip summary is shown in Table II. The NSTI accelerator is
implemented in a 40nm 1p10m process using a standard-cell-
based design flow. The RTL code is synthesized in Synopsys
Design Compiler (DC). To achieve the target throughput, a
clock period of 33.33 ns (30 MHz) evaluated at the worst-
case process, voltage, and temperature (PVT) corner is targeted
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TABLE |
MEMORY SUMMARY (UNIT:KB)

Block w wb ab p_index
Block-0 22 22 <<1 N/A
Block-1 2,008 71 50 131
Block-2 9,008 289 16 33
Block-3 9,008 289 8 8
Block-4 9,008 289 4 N/A
Block-5 9,008 289 1 N/A
Block-6 9,008 289 8 N/A
Block-7 9,008 289 16 N/A
Block-8 9,008 289 16 N/A
Block-9 9,008 289 16 N/A
Block-10 54 9 N/A N/A
Total 66,126 2,144 423 172

TABLE Il
CHIP SUMMARY
Symbol Quantity
Technology 40nm 1p10m CMOS

Transistor flavor HVT 92.8%, SVT 7.2%

Gate count 2811 kGates

1/0s Digital: 13/27, Power: 33
Core VDD 09V

1/0 VDD 1.8V

Core size 12.7 mm?

throughout the chip implementation. Taking into account the
overhead to be introduced by the subsequent physical design, a
40% timing slack is used during the synthesis. Specifically, the
NSTI accelerator is synthesized with a target clock frequency
of 30/(1-40%) = 50 MHz. To reduce leakage power, the NSTI
accelerator is first synthesized using high-threshold (HVT)
standard cells only. Then, standard-threshold (SVT) standard
cells are selectively inserted into the critical paths for timing
improvement. This is carried out by switching on the leakage
optimization tool in DC. Overall, the chip occupies a core area
of 12.7 mm? with an aspect ratio of 0.52 and integrates 2811
kGates. The layout of the accelerator is shown in Fig. 10. The
computing blocks and the buffers for intermediate results are
colored in red. The pooling indexes (shown as RAM in Fig.
6) have consumed a memory size of 172 KB. To reduce area
cost, RAMs are realized by dual-port SRAM hard macros,
which are in blue. The 2,144 KB local ROMs for weights are
distributed in each block, colored in yellow. For the leakage
reduction purpose, HVT devices are used in 92.8% of the logic
cells. The chip has 13 digital inputs, 27 digital outputs, and
33 power pads supply core and I/O power domain. The I/O
domain has a constant supply voltage of 1.8 V, and the logic
and memory domain both have a normal supply voltage of
0.9 V. The post-layout simulation is performed to verify the
functionality. The die photo is shown in Fig. 11.

“« 5.17 mm >

WMWWWWWWMMWHMMMWMWMWWMWWH\WWWD

Fig. 10. The layout of NSTI accelerator.

Fig. 11. The die photo of NSTI accelerator
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V. EXPERIMENT RESULTS

As shown in Fig. 12, the first row is the input images
of the NSTI accelerator. The accelerator takes the cropped
text region and outputs the prediction of each pixel as shown
the third row. In the second row, it merges the 3-D salience
map into a 2-D salience map, showing the confidence level
of each pixel to the ground true class. In Fig. 12 (a), it
shows some good prediction examples with high confidence
level and clean prediction boundary. In Fig. 12 (b), some
bad predictions with low confidence level are shown, which
have uneven illumination or low contrast input images. By
evaluating the pixelwise classification accuracy, the NSTI
accelerator achieves an accuracy of 90% and 91% testing on
two public datasets, ICDAR-03 and ICDAR-13, respectively.

The implementation results are summarized in Table III. In
this highly paralleled architecture, we are able to map 46 PEs,
which contains 193 MMACs (Mega multiply-add operations)
in total onto our chip. The total number of operations (MAC
operation is counted as 2 operations) in B-CEDNet is 39 G.
The NSTT accelerator can work at a frame rate of 34 fps (1,326
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TABLE Ill
EXPERIMENT RESULTS AND COMPARISON
. Energy efficiency
ASIC/ Binary Process Core Power Freq Frame rate Latency Num. of GOP/s Al’e";l Area efficiency (GOP/sIW)
GPU (nm) VDD (V) W) (MHz) (fps) (ms) OoP peak  Real (mm®) (GOP/s/Imm2) Peak Real
This work ASIC  Yes 40 0.9 1.9 30 34 40 39G 14,868 1,326 12.7 893 7825 698
[9] GPU  Yes 28 N/A 80 1000 200 5 39G N/A 7,800 601 N/A N/A 97
[30]1 ASIC  Yes 65 0.6 N/A 400 N/A 64 12G N/A 19 1.33 MGE 14 GOP/s/IMGE N/A 56700
[30]2 ASIC  Yes 65 1.2 N/A N/A 435 N/A 12G N/A 525 1.33 MGE 395 GOP/s/IMGE N/A 8600
[31] ASIC  No 45 1 0.6 400 N/A N/A N/A 320 294 12.5 25.6 533 490
[27] ASIC  No 65 0.82-1.17 0.278  100-250 35 fps 115 276G 42 23 12.25 3.43 151 83
[32] ASIC No 28 0.575-1.1  0.039  200-1175 58 17 13G 676 78 35.28 600 2930 N/A

* For the reference ASIC designs, if the design is testing with different neural network architecture, we pick the one with best-recorded performance.
+ For all the reference ASIC designs, the power and energy efficiency results do not include the off-chip DRAM. This work include all the memory

needed for this application.

* [30]' and [30]% shows the result for the best energy efficiency and GOP/s, respectively.

GOP/s) with the peak energy efficiency of 7825 GOP/s/W and
the real energy efficiency of 698 GOP/s/W. The total power
of the NSTT accelerator is 1.9 W with the core consuming 0.8
W. The dynamic power is estimated based upon simulation
waveform of the test cases.

The first two rows in Table III compares exactly the same
architecture (B-CEDNet) by GPU and our ASIC implementa-
tion. It should be noted that the GPU-based implementation
for B-CEDNet (binary) already delivered 8 x better throughput
than that of the CEDNet (non-binary) [9]. Compared with its
optimal GPU-based implementation counterpart [9], this work
provides 7x better energy efficiency while still maintaining a
real-time frame rate with less than 2 W power consumption.
Therefore, the proposed accelerator can enable real-time scene
text interpretation on the power-constrained mobile devices.

We also compare our work with other ASIC designs for
convolutional neural network acceleration (CNN). All of [27],
[30]-[32] are general CNN accelerators rather than task-
specific ones. Reference [30] is built upon the binary weight
CNN, while [27], [31], [32] are built upon fixed-point CNNs.
Compared with the throughput-optimal test set in [30], the
proposed accelerator achieve 2.5x better throughput in terms
of GOP/s. (Since the total number of operations in different
network vary a lot, GOP/s is a better reflection of throughput
rather than the frame rate.) Compared with fixed-point CNN
ASIC designs [27], [31], [32], the proposed accelerator can
delivery 6x-58x better throughput. In terms of the latency,
even if the number of operations of our network is 14x-32x
larger than [30!, 27], the proposed accelerator achieves the
best latency among them. Only when compared with [32],
its latency is 2.4x better than ours, due to 30x less number
of operations in its network. Among all these ASIC designs,
our accelerator is the only one that can process the B-CEDNet
with 39 Giga operations in a real-time manner and low latency
of 40 ms. Binary feature of B-CEDNet enable us to map 46
PEs containing 193 MMACs for massive spatial parallelism.
Highly pipelined data flow control enable more temporal
parallelism. Both spatial and temporal parallelism contribute
to optimize the throughput and latency in our design. 12x
energy efficiency gap between our work and [30]? can be
explained by following points. First, we trade it off for better
throughput, since our primary task is to guarantee a real-time

throughput. Second, they have designed customized on-chip
memory for a low-power design. Additionally, they store the
intermediate results (between blocks/layers) and parameters in
off-chip DRAM, which are excluded in power consumption
reports. We do consider the power consumption for the entire
application rather than just for the computation core. Reduc-
tion in computation complexity to bit-level operations benefits
in power saving. Store all the weights and intermediate results
on chip eliminating off-chip communication for the sake of
extending battery life.

VI. CONCLUSION

In this paper, we present an ASIC accelerator for real-time
and low-latency natural scene text interpretation on power-
constrained mobile devices. The NSTI accelerator takes the
cropped scene text image as input and output a salience
map for pixelwise classification result. To target a real-time
throughput and low latency, a B-CEDNet is adopted as the core
architecture to enable massive spatial parallelism. A highly
pipelined data flow control is applied to enable temporal
parallelism. Moreover, all the binarized intermediate results
and parameters are stored on chip to eliminate the power
consumption and latency overhead of off-chip commutation.
This NSTI accelerator is implemented in a 40nm CMOS
technology, which can process 128 x32 scene text images at 34
fps with an latency of 40 ms for pixelwise interpretation with
accuracy no less than 90%. Its real energy-efficiency is 698
GOP/s/W and its peak energy-efficiency can get up to 7825
GOP/s/W. In the IoT applications, the proposed accelerator can
be used in power-constrained edge devices to enable real-time
augment reality applications for natural scene understanding.
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