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Compressive sensing (CS) is a promising solution for low-power on-body 
sensors for 24/7 wireless health monitoring [1]. In such an application, a mobile
data aggregator performing real-time signal reconstruction is desired for timely
prediction and proactive prevention. However, CS reconstruction requires 
solving a sparse approximation (SA) problem. Its high computational complexity
makes software solvers, consuming 2–50W on CPUs, very energy inefficient for
real-time processing. This paper presents a configurable SA engine in a 40nm
CMOS technology for energy-efficient mobile data aggregation from 
compressively sampled biomedical signals. Using configurable architecture, a
100% utilization of computing resources is achieved. An efficient data-shuffling
scheme is implemented to reduce memory leakage by 40%. At the 
minimum-energy point (MEP), the SA engine achieves a real-time throughput for
reconstructing 61-to-237 channels of biomedical signals simultaneously with
<1% of a mobile device’s 2W power budget, which is 76–350× more energy-
efficient than prior hardware designs. 

Electrocardiography (ECG), electroencephalography (EEG), and 
electromyography (EMG) signals, collectively referred to as ExG, contain critical
information about the human body status. ExG signals can span 3 orders of
magnitude in amplitude (10μV–10mV) and frequency (0.1Hz–500Hz), and can
have a large difference in sparsity depending on the subject’s activity. For
instance, a low and high activity can produce a signal sparsity (k/n) of <2% and
>15%, respectively [2], where k is the signal sparsity level and n is the signal
dimension (# of samples). As a result, prior chip implementations of SA solvers
[3-4] that are optimized to handle limited dynamic range and fixed problem size
are not suitable for the intended application. We designed a flexible SA 
architecture (Fig. 18.5.1), which uses a single-precision floating-point data 
format to achieve a large dynamic range. It can be configured to handle different
problem settings on-the-fly, including signal and measurement dimensions 
(n and m), signal sparsity level (k), reconstruction basis (A) and error tolerance
(∈). 

The human body is expected to have a low activity on average, where ExG 
signals feature a high sparsity, especially when thresholding schemes are used
[2]. This is where orthogonal matching pursuit (OMP) has a better 
complexity-accuracy trade-off than other SA algorithms [4]. For efficient 
mapping, 3 algorithm reformulation techniques have been introduced to further
break down the OMP algorithm into 6 basic linear algebra (BLA) operations at
each iteration [5], which are grouped into 3 tasks: atom searching (AS), 
least-squares solving (LS), and estimation update (EU). Taking advantage of the
algorithm-architecture co-design, most hardware resources in the SA 
architecture are shared across different tasks.

The computing resources in the SA architecture include the vector and scalar
processing cores (VC and SC), Fig. 18.5.2. To support flexible problem sizes
with high energy efficiency, 128 processing elements (PEs) in the VC are 
coordinated through an interconnect block (IB). When the IB is enabled, PEs are
configured to perform inner product. Otherwise, PEs can be configured to 
support element-wise addition, multiplication, multiply-accumulation, and 
vector-scalar product. A shift-register logic (SRL) unit is used in the feedback
path of each PE to enable folded processing of long vectors. The SC supports
scalar comparison, addition, accumulation, and division. Depending on the 
top-level data-path configuration, the SC can either post-process a selective
result from the VC or process independent data in parallel. For efficient local
memory access, a 1.2KB and 1.5KB cache is dedicated to each PE and the SC,
respectively (Fig. 18.5.1). To facilitate data communication between the VC and
SC in long delay lines, a 768B cache is shared between all the PEs and the SC.
In addition, a core-level SRL unit is used to connect the SC with all the PEs. This
feedback path effectively reduces the loop latency between VC and SC to 4–8
cycles, thereby greatly accelerating the iterative BLA operations such as forward
and backward substitution (FS and BS). The SA engine uses FIFO interfaces to
handle the flow control at the data inputs and outputs. A fixed-to-floating-point
conversion interface is also available at the input to allow the processing of 
different signal representations. When executing the OMP algorithm, the VC is
dynamically configured in a SIMD fashion. Similarly, the SC and data-paths are
also dynamically configured to perform the BLA operations in different tasks. As

a result, a 100% utilization of the computing resources is achieved, maximizing
area efficiency (Fig. 18.5.2).

In the LS task, column and row access of a triangular matrix (L) is required for
performing FS and BS, respectively, for realizing Cholesky factorization (CF). As
accessing a row of L is equivalent to accessing a column of LT, a straightforward
memory-mapping scheme for PE caches is to store both L and LT as a regular
square matrix (Fig. 18.5.3). We refer to this scheme as a mirror mode, where
columns of L and LT can be accessed at the same address of each PE cache in
an ascending and descending order, respectively. The mirror mode allows the
square matrix to fold into 128×128 blocks to perform a larger-size (k>128) CF at
the cost of doubled memory size. As memory leakage dominates the total power,
a data-shuffling scheme that is more efficient in utilizing memory space is 
realized. In the shuffle mode, each row of L is stored in a shuffled order across
adjacent PE caches. As a result, the rows and columns of L can be accessed at
the same and at a different address of each PE-cache, respectively. To recover
the data order correctly, a shuffler performing circular position-shift is 
implemented. Compared to the mirror-mode implementation, a 2× memory size
reduction results in a 40% lower total power. 

Reconstruction signal-to-noise ratios (RSNR) from 1-minute recordings of real
ExG signals downloaded from the PhysioBank database are measured on the SA
engine (Fig. 18.5.4). CS samples of ExG signals are encoded by random
Bernoulli matrices, with a 5% overlapping window applied. In order to observe
the raw signal sparsity, no thesholding scheme is applied. The best orthogonal
basis for reconstructing ECG, EEG, and EMG are found to be the Haar discrete
wavelet transform (DWT), the discrete cosine transform (DCT), and a DWT-DCT
joint basis, respectively. It is also found that the RSNR performance is sensitive
to ∈. Dynamically configuring ∈ to 3–5% of the energy of each CS sample
results in the best RSNR performance. In general, using higher n for 
reconstruction improves RSNR at the cost of lower throughput and higher 
energy. To achieve RSNR>15dB with maximum throughput, the preferred n for
reconstructing the chosen ECG, EMG, and EEG recordings is found to be 256,
128, and 512, respectively.

The power and operating frequency of the SA engine are measured at different
supply voltages (Fig. 18.5.5). The MEP is found at VDD=0.7V, which corresponds
to a 12.8mW power and a 12.2MHz operating frequency. At the MEP, the SA
engine achieves a throughput of 237, 123, and 66KS/s and an energy efficiency
of 54, 104, and 194nJ/sample for reconstructing ECG, EMG, and EEG signals,
respectively, at RSNR>15dB. This throughput corresponds to the simultaneous
reconstruction of 237, 61, and 132 channels of ECG, EMG, and EEG data, 
respectively. At VDD=1V, the maximum operating frequency of the SA engine is
25.3MHz. Compared to the MEP, a 2× higher throughput can be achieved at the
cost of 3× lower energy efficiency.

The SA engine is compared to an Intel Core i7-4700MQ processor and prior chip
implementations [3-4] of generic SA solvers (Fig. 18.5.6). Overall, the SA engine
achieves a 2× higher throughput with up to 14,100× better energy efficiency for
ExG signal reconstruction than the software solver running on the CPU. For 
high-sparsity signal reconstruction, the SA engine is 76–350× more energy 
efficient than prior hardware designs. With a <1% power budget of mobile
devices, the 5.13mm2 SA engine in 40nm CMOS (Fig. 18.5.7) can provide a 
2–3× energy saving at CS-based sensor nodes, while providing timely feedback
and bringing signal intelligence closer to the user. 
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Figure 18.5.1: System architecture of the SA engine.

Figure 18.5.2: PE and SC block diagrams and the dynamic configuration
scheme of the SA engine for executing the AS, LS, and EU tasks of the OMP
algorithm.

Figure 18.5.3: The memory access and folding scheme of PE caches for 
handling Cholesky factorization in mirror and shuffle mode. Column and row
access is needed for solving FS and BS, respectively.

Figure 18.5.5: Power vs. frequency measured at different VDD, measured
throughput and energy efficiency for ExG reconstruction when operating at the
MEP (the highlighted numbers are the best performance for achieving
RSNR>15dB).

Figure 18.5.6: Comparison with an Intel Core i7-4700MQ processor and prior
chip implementations of the generic SA solver.

Figure 18.5.4: Measured RSNR of ECG, EEG, and EMG signals reconstructed
on the DWT, the DCT, and joint DWT-DCT basis, respectively, with different
signal dimensions (n), compression ratios (m/n), and signal sparsity (k/n).
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Figure 18.5.7: Die photo and chip summary.
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