
A Scalable Sparse Matrix-Vector Multiplication Kernel for
Energy-Efficient Sparse-Blas on FPGAs

Richard Dorrance
EE Department, UCLA

Los Angeles, CA 90095 USA
rdorrance@ucla.edu

Fengbo Ren
EE Department, UCLA

Los Angeles, CA 90095 USA
renfengbo@ucla.edu

Dejan Marković
EE Department, UCLA

Los Angeles, CA 90095 USA
dejan@ee.ucla.edu

ABSTRACT
Sparse Matrix-Vector Multiplication (SpMxV) is a widely used
mathematical operation in many high-performance scientific and
engineering applications. In recent years, tuned software libraries
for multi-core microprocessors (CPUs) and graphics processing
units (GPUs) have become the status quo for computing SpMxV.
However, the computational throughput of these libraries for
sparse matrices tends to be significantly lower than that of dense
matrices, mostly due to the fact that the compression formats
required to efficiently store sparse matrices mismatches
traditional computing architectures. This paper describes an
FPGA-based SpMxV kernel that is scalable to efficiently utilize
the available memory bandwidth and computing resources.
Benchmarking on a Virtex-5 SX95T FPGA demonstrates an
average computational efficiency of 91.85%. The kernel achieves
a peak computational efficiency of 99.8%, a >50x improvement
over two Intel Core i7 processors (i7-2600 and i7-4770) and
showing a >300x improvement over two NVIDA GPUs (GTX
660 and GTX Titan), when running the MKL and cuSPARSE
sparse-BLAS libraries, respectively. In addition, the SpMxV
FPGA kernel is able to achieve higher performance than its CPU
and GPU counterparts, while using only 64 single-precision
processing elements, with an overall 38-50x improvement in
energy efficiency.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Algorithms implemented in hardware; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra—Sparse, structured, and
very large systems (direct and iterative methods)

General Terms
Algorithms, performance

Keywords
SpMxV, sparse-BLAS, FPGA, CPU, GPU, energy-efficiency,
computational efficiency, benchmarking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’14, February 26–28, 2014, Monterey, California, USA.
Copyright © 2014 ACM 978-1-4503-2671-1/14/02…$15.00.
http://dx.doi.org/10.1145/2554688.2554785

1. INTRODUCTION
Sparse matrices arise in a wide variety of computational
disciplines, including image reconstruction, circuit and economic
modeling, industrial engineering, compressive sensing, neural
networks, and algorithms for least squares and eigenvalue
problems [1-3]. As such, Sparse Matrix-Vector Multiplication
(SpMxV) is the main computational kernel that dominates the
performance of many of the aforementioned applications.
Unfortunately, the performance of SpMxV algorithms tends to be
much lower than that of dense matrices, mostly due to the
mismatch between the memory access patterns of sparse matrices
and the compression formats required to efficiently store them
[3,4].

Numerous efforts have been made to accelerate the performance
of SpMxV on multi-core microprocessors (CPUs) [5,6] and
graphics processing units (GPUs) over the years [7-9]. Recently,
field-programmable gate arrays (FPGAs) have become an
attractive option for accelerating SpMxV [1-4,10-14]. FPGAs
have high floating-point performance, large amounts of on-chip
memory, and an abundant number of high-speed I/O pins capable
of providing large amounts of off-chip memory bandwidth. The
flexible nature of FPGAs also allows architectural adaptations to
satisfy the needs of different problems.

In this paper, we propose a scalable architecture for SpMxV with
higher computational efficiency than traditional CPU/GPU-based
approaches. Computational efficiency is a measure of the
percentage of the total hardware resources available that are
actively being used by an algorithm. An implementation of an
algorithm with a higher computational efficiency will therefore be
more energy-efficient. We leverage the structure of conventional
sparse matrix compression formats for general sparse matrices in
order to regularize their memory access patterns. The
benchmarking results based on the FPGA implementation show
that the proposed SpMxV kernel can reach significantly higher
computational efficiency than state-of-the-art solutions using
CPUs and GPUs, with more than a 50x and 300x improvement
respectively. Even for very large, irregular, sparse matrices, our
design can achieve performance comparable to that of dense
matrices.

The remainder of the paper is organized as follows. Section 2
introduces SpMxV and discusses the inefficiencies present in
existing software (powered by CPUs and GPUs) and hardware
(FPGA) implementations. Section 3 details the proposed
architecture to address these short comings. Benchmarking results
on computational throughput and energy efficiency are presented
in Section 4. Section 5 concludes the paper.

161

2. SPARSE MATRIX-VECTOR
MULTIPLICATION
SpMxV is a mathematical kernel that takes the form of:

 ,y Ax (1)

where A is an M×N sparse matrix (the majority of the elements
are zero), y is an M×1 vector, and x is an N×1 vector. More
generally, SpMxV can be represented as:

 ,y Ax (2)

where α and β are scalars.

The performance of sparse-matrix algorithms tends to be much
lower than that of dense matrices due to two key factors: (1) the
way the sparse matrix is represented in memory and (2) the
computation architecture of the target platform.

2.1 Sparse Matrix Representation
There are a variety of ways to represent the sparse matrix for
storage purposes. However, the few computationally efficient
formats are restricted to highly structured matrices, such as
diagonal or banded matrices. In this paper, we focus on boosting
the efficiency of SpMxV for generic sparse matrices. Therefore,
we only present general sparse storage schemes in this section.

Figure 1 illustrates a sample sparse matrix and three different
schemes to represent it. The simplest storage scheme, shown in
Fig. 1(b), is the coordinate (COO) format. The row indices,
column indices, and values of the nonzero matrix entries are
explicitly stored in 3 separate arrays: row, col, and data. The
compressed sparse row (CSR) format (Fig. 1(c)) is the most
commonly used sparse storage scheme, which also stores the
column indices and nonzero values into the arrays: col and data.

Unlike the COO format, the row indices are not explicitly stored,
but rather as an array of row pointers, ptr. The ith element of ptr
corresponds to the offset of the ith row into the col and data
arrays. For example, in Fig.1(c) the first element of ptr is 0,
indicating that the first element in row 0 is 1 and is located in
column 0; the second element of ptr is 2, indicating that the first
element in row 1 is 2 and is located in column 1; the third element
of ptr is 4, indicating that the first element in row 2 is 5 and is
located in column 5; and so on. For an M×N matrix, ptr has M+1
elements in the CSR format, with the final element indicating the
total number of nonzero entries in the matrix. The compressed
sparse column (CSC) format, used in our SpMxV kernel, is a
variation of the CSR format (Fig. 1(d)). Instead of storing the
column indices and an array of row pointers, the CSC stores the
row indices and an array of column pointers. For any matrix A,
the CSR storage of A is exactly the same as the CSC storage of
AT.

2.2 Existing SpMxV Architectures
Specialized software libraries for solving dense and sparse linear
algebra problems are very popular for high-performance
computing. These libraries, such as MKL [5] for CPUs, and
cuBLAS [7] and cuSPARSE [8] for GPUs, provide a standardized
programming interface, with subroutines optimized for the target
platform.

For SpMxV on CPUs and GPUs, the ith element of y is typically
calculated as the dot-product of the ith row of A and the vector x
(Fig. 2). This is because each computing core usually contains only
a handful of general purpose registers and a single floating-point
unit (FPU). Therefore, CSR is one of the most computationally
efficient storage options for sparse matrices on CPUs and GPUs. It
has the added benefit of being easily parallelizable: each
computing core can be independently assigned a different value of
y to calculate.

Improving the parallel performance of SpMxV via blocking
(splitting up the matrix into several sub-matrices) and
modifications to the CRS format is a very active area of study

(a)

1 4 0 0 0

0 2 3 0 0

5 0 0 7 8

0 0 9 0 6

A

(b)

1 4 2 3 5 7 8 9 6

0 0 1 1 2 2 2 3 3

0 1 1 2 0 3 4 2 4

data

COO row

col

(c)

1 4 2 3 5 7 8 9 6

0 2 4 7 9

0 1 1 2 0 3 4 2 4

data

CSR ptr

col

(d)

1 5 4 2 3 9 7 8 6

0 2 0 1 1 3 2 2 3

0 2 4 6 7 9

data

CSC row

ptr

Figure 1. The sparse matrix representation for (a) an example
matrix A in the (b) COO, the (c) CSR, and the (d) CSC
formats.

Figure 2. A graphical representation of how SpMxV is
performed using the CSR format on CPUs and GPUs. Each
element in y is calculated as the dot product between the
appropriate row of A and the vector x.

162

[3,6,9]. Unfortunately, the use of CSR, and its variants, for SpMxV
have several drawbacks on CPUs and GPUs that hurts its overall
computational efficiency [3]:

(1) The SpMxV kernel is memory-bounded. CPUs and GPUs
typically have much larger computational throughput than
available memory bandwidth. This leads to a very low
utilization rate for the computing resources, and
subsequently, poor energy efficiency.

(2) The indirect (global) memory references for the vector x
present in col adds uncertainty to the memory access pattern,
ultimately delaying the computation. Each element of col
must first be loaded from memory and added to the address
of x as an offset. Only then can the correct value of x be
loaded into the FPU for computation.

(3) Irregular memory access of vector x causes a large number of
cache misses. In CPUs, this cache miss can add tens of
cycles of latency. In GPUs, a cache miss can add hundreds of
cycles of latency. GPUs typically try to hide these large
latencies by interleaving dozens of threads on a single
computational core. This works well for computation-
bounded algorithms, but not memory-bounded algorithms
like SpMxV.

(4) Short row lengths (i.e. very few nonzero elements per row)
can cause serious performance degradation. When rows are
short, the overhead associated with calculating each element
of y becomes significant.

Due to these drawbacks, CPUs and GPUs reach less than 5% of
their theoretical peak processing throughput and utilize less than
50% of their available memory bandwidth for SpMxV [6,9].

Previous FPGA implementations have attempted to alleviate these
inefficiencies by introducing several architectural changes. In
some designs, several processing elements (PEs) work together to
compute a single element of y in parallel [1,4,12]. These designs
employ various reduction circuits in order to combine the
intermediary results. Other designs have each PE calculate several
elements of y in a sequential manner in order to mitigate the effect
of short rows [2,10,12]. In both cases, the entirety of the x vector,
or a large subsection (in the case of blocking), is buffered in on-
chip Block RAM (BRAM) to reduce the effects of irregular
memory accesses [1-4,10-13]. However, these prior
implementations primarily focus on reducing the total number of

adders and their resource usage in the design. As such, they only
average less than 50% of their theoretical peak processing
throughput and memory bandwidth [1-4,10-14].

3. PROPOSED ARCHITECTURE
Our architecture abandons the idea of calculating each element of
y separately as the row-wise dot product between A and x. Instead,
the entirety of y is calculated as the column-wise vector additions
of A weighted by each element of x, as shown in Fig. 3.
Fundamentally, this allows us to directly address the major
limitations present in the SpMxV algorithm when implemented on
an FPGA:

(1) A dedicated co-processor allows for much better balancing
of system resources. The number of processing elements
(PEs) can be efficiently scaled to match the available
memory bandwidth.

(2) What used to be indirect (global) memory references for x in
col vector (for the CSR format) are now direct (local)
memory references for y in the row vector. In other words,
when a column of A is multiplied by an element of x, in the
manner shown in Fig. 3, we know exactly which elements of
y the partial product contributes to. This allows us to halve
the number of require memory accesses, the largest
bottleneck in the SpMxV algorithm.

(3) Memory access to the x vector is no longer irregular, but
sequential. By using the CSC format to store A, both A and x
can be placed in a large off-chip memory and sequentially
streamed into the DSP co-processor (eliminating the time
and energy overheads of a cache miss).

(4) Short row or column lengths have much less impact on the
performance of SpMxV, since the PEs are rarely idled thanks
to the balanced memory bandwidth and computing
capability. However, performance is degraded as the
memory bandwidth of x approaches that of A for extremely
sparse matrices. In the rare case of M N, the performance
of CSC is no better than that of CSR.

Figure 3. A graphical representation of how SpMxV is
performed using the CSC format. The entire vector y is
calculated as a series of vector additions of the columns of A
weighted by the appropriate element from x.

Figure 4. Schematic of a single PE using a simple dual-port
RAM, floating-point adder, and a floating-point multiplier.

163

Computing the SpMxV column-wise also allows for an extremely
simple PE (Fig. 4). Each PE contains a single-precision floating-
point adder and multiplier, as well as a simple dual-port RAM.
Each simple dual-port RAM utilizes the large amounts of BRAM
resources available on FPGAs and can accommodate several
hundred to several thousand elements of y. Figure 5 shows the
overall experiment setup, in which the SpMxV kernel
(implemented on an FPGA) serves as a co-processor attached to
an external computer. A dedicated memory controller allows the
elements of A and x to be continuously streamed into the FPGA,
while the SpMxV controller’s primary function is scheduling and
hazard detection. Hazard detection avoids the conflict between
two partial products that contribute to the same element of y
overlapping due to the latency of the floating-point adder. If such
a hazard is detected, we must either stall or provide alternative
data to ensure that the result of y is calculated correctly.

3.1 Processing Element
As stated previously, each PE (Fig. 4) contains a single-precision
floating-point adder and multiplier, as well as a simple dual-port
RAM. To perform the SpMxV, each PE multiplies an element of
the data vector (Aij) and the corresponding element of the x vector
(Xj) together. The resulting partial product is then added to
address in the row vector (i), before being stored back into the
BRAM of the dual-port RAM. Due to the latency of the
multiplication and addition operations, a Valid signal is used to
prevent data corruption due to hazards. Using this strategy, data
can be continuously streamed into each PE (directly from the
CSC format) with a small startup overhead latency equal to that of
the adder and the multiplier.

Since each PE has its own working copy of the vector being
computed, there are two possible strategies for assembling the
final vector. The first option is to assign a subset of the x vector to
each PE (i.e. blocking along the columns of A). Each PE
computes a partial sum of the final vector and an adder tree
(which can be built from the existing adders in each PE) is used to
combine them at the end. Similar to prior FPGA implementations
[1-4,10-13], this straightforward approach has several drawbacks.

First, the reduction circuit adds a large amount of overhead in
terms of latency and additional hardware (even if existing adders
are used, more resources are needed for configurability). Second,
by splitting up computation along the columns, we lose some of
the sequential nature of the memory accesses we had gained with
the CSC format. The memory accesses for each PE are still
sequential, but globally the memory accesses for all PEs are
irregular. To mitigate this, a more complicated memory controller
is required to ensure a balanced load across all of the PEs. Third,
if there are fewer columns than PEs, this approach is effectively
no different than prior FPGA implementations.

The second option for computing the final vector is to assign a
subset of rows of A to each PE (i.e. blocking along the rows of A).
Each PE computes a subset of the final vector, which are then
concatenated together at the end (requiring no additional latency).
Additionally, this preserves the property of sequential memory
accesses across all PEs, allowing for a much simpler memory
controller (at the cost of a slightly more complicated SpMxV
controller to handle additional scheduling and hazard detection).
Finally, with minor modifications to the SpMxV and memory
controllers, our SpMxV kernel can also support a sparse matrix
dense matrix multiplication (SpMxM): each column of the dense
matrix is assigned to a PE, which each PE computing a single
column of the resulting matrix. Our SpMxV kernel uses this
option, with the modifications to support SpMxM, in its
implementation.

3.2 SpMxV and Memory Controller
The primary purposes of the SpMxV controller are scheduling
and hazard detection. The memory controller acts as a slave to the
SpMxV controller, ensuring a continuous stream of data into the
PEs. Hazards arise when two or more partial products want to
write to the same memory address of the dual-port RAM in a
short period of time. Due to the latency of the floating-point adder
in Fig. 4, the existing sum of the partial products in the dual-port
RAM must be prefetched. If two partial products that contribute
to the same term are allowed to proceeded, the second product
will prefetch a sum that does not include the first product. The
result is that the final sum of products will not include the first
conflicting partial product. The SpMxV controller detects these
hazards and corrects them in one of two ways. It first attempts to
shuffle the partial products to increase their distance in time. If
this is not possible, or would result in additional hazards, the
SpMxV controller issues a stall command to the PE (by
deasserting the Valid signal, and holding the values of Aij, Xj, and
i).

Figure 6 shows the stalling behavior for a single processing
element performing SpMxV between the example A matrix from
Fig. 1(a) and the vector x = [0.1 0.2 0.3 0.4 0.5]T. In the example,
the latency of the floating-point multiplier and adder are both 2

Table 1. Resource usage for the SpMxV kernel (64 PEs).

Resource Used Available Percent

Registers 31,621 58,880 53.70%

LUTs 27,958 58,880 47.48%

BRAMs 160 244 65.57%

DSP48Es 320 640 50.00%

Memory Controller

QDR0

SpMxV
Controller

Processing Element
FPGA

QDR1

Scheduling &
Hazard Detection

DRAM

Processing Element

Processing Element

Processing Element

Processing Element

Processing Element

Figure 5. Top-level schematic of the SpMxV kernel, with 8
processing elements, running on the ROACH FPGA platform.
The SpMxV kernel acts as a coprocessor for a networked
computer running a MATLAB environment.

164

clock cycles. Additionally, the simple dual-port memory (Y) has a
latency of 1 clock cycle. In cycle 2, a hazard is detected due to the
proximity of the partial product of 1×0.1 and the partial product
of 4×0.2. We must stall for 2 cycles—by deasserting Valid and
holding the values of Aij, Xj, and i—to ensure that partial product
of 1×0.1 is added to Y before continuing. If co-processor had not
stalled, the partial product of 4×0.2 would have added itself to the
current value of Y, 0, producing an incorrect final value of 0.8
(instead of 0.9). Computation resumes in cycle 5, after the hazard
has passed. Additional hazards are detected in cycles 6 and 12,
with each hazard resulting in 3 clock cycles of stalling.

4. PERFORMANCE EVALUATION
The SpMxV kernel was evaluated on the open-source academic
research platform “ROACH” (Reconfigurable Open Architecture
Computing Hardware) [15]. The ROACH platform is equipped
with a Virtex-5 SX95T FPGA for DSP applications, a PowerPC
running Linux, two 36Mb QDRII+ SRAMs, and 2GB of DDR2
SDRAM for a combined peak memory bandwidth of 35.74 GB/s.
The PowerPC allows a computer running MATLAB to interface
with “software registers,” BRAMs, and FIFOs on the FPGA, as
well as to load data in and out of the board-level QDRs and
DRAM (Fig. 5).

Table 1 show the total resource usage of the SpMxV kernel
implemented with 64 PEs using a single-precision floating-point
format. The SX95T FPGA can support up to 96 single-precision
PE (using 98.4% of the available BRAM), but is ultimately
limited by our available memory bandwidth. The CSC A matrix is
stored in the SDRAM, while the x and y vectors are stored in the
two QDRs. The QDRs are accessed in parallel to effectively
create a single memory with twice the bit width. The ROACH
board can operate up to 150MHz (limited by the QDR memory
controller), resulting in a peak performance of 19.2 GFLOP/s with
a thermal design power (TDP) of 25W.

4.1 Comparison to CPUs and GPUs
We use a collection of 10 unstructured matrices used by both
Williams et al. [6] and Bell et al. [9] in our performance
benchmarking study. Table 2 details the size and overall sparsity
structure of each matrix. All of the matrices are publically
available online from the University of Florida Sparse Matrix
Collection [16]. For comparison, the same benchmarks are run on
both a 64-bit Linux machine and a 64-bit Windows machine.

The Linux machine has 16GB of memory and an Intel Core i7-
2600 processor (4 physical cores with hyper-threading, for a total
of 8 virtual cores), using the MKL sparse-BLAS library [5]. The
Core i7-2600 processor has a peak memory bandwidth of 21GB/s

CLK

Aij

Xj

i

Valid

Ptr

Count

Y

0 1 2 3 4 5 6 7 8 9

0 2 4 6 7 9

1 5 4 2 3 9 7 8 6 X

0.1 0.2 0.3 0.4 0.5 X

0 2 0 1 3 2 3 X

1 0 1 0 1 0 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

0

0

0

0.1

0

0

0

0.1

0

0.5

0

0.9

0

0.5

0

0.9

0.4

0.5

0

0.9

1.3

0.5

0

0.9

1.3

0.5

2.7

0.9

1.3

3.3

2.7

0.9

1.3

7.3

2.7

0.9

1.3

7.3

5.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Hazard Hazard Hazard

Figure 6. Timing diagram for calculating the SpMxV of the example A matrix from Fig. 1(a) and x = [0.1 0.2 0.3 0.4 0.5]T using a
single PE. For this example, the floating-point adder and multiplier both have a latency of 2 clock cycles and the simple dual-port
memory (Y) has a latency of 1 clock cycle.

165

with a peak performance of 108.8GFLOP/s and a TDP of 95W
[17]. The benchmarks were also run on an NVIDIA GeForce
GTX 660 graphics card (960 CUDA cores), installed on the same
Linux machine, using the cuSPARSE library [8]. The GPU has a
peak memory bandwidth of 144.2GB/s and a peak performance of
1881.6GFLOP/s with a TDP of 140W [18].

The Windows machine has 32GB of memory and an Intel Core
i7-4770 processor (4 physical cores with hyper-threading, for a
total of 8 virtual cores), using the MKL sparse-BLAS library [5].
The Core i7-4770 processor has a peak memory bandwidth of
25.6GB/s and a peak performance of 217.6GFLOP/s with a TDP
of 84W [19]. The benchmarks were also run on an NVIDIA
GeForce GTX Titan graphics card (2688 CUDA cores), installed
on the same Windows machine, using the cuSPARSE library [8].
The GPU has a peak memory bandwidth of 288.4GB/s and a peak
performance of 4,500GFLOP/s with a TDP of 250W [20].

Figure 7 compares the raw computational performance (in
GFLOP/s) of the CPU, GPU, and FPGA SpMxV kernels for all of
the matrices tested. SpMxV on the two CPUs showed a
performance drop of 20-50% compared to dense matrices, while
the two GPUs showed a performance drop of 30-60%. Figure 8
compares the computational efficiency of the CPU, GPU, and
FPGA SpMxV kernels for all of the matrices tested. For a
memory bound algorithm like SpMxV, the computational
efficiency is strongly determined by the memory hierarchy (i.e.
the cache structure and size). The computational efficiency is
calculated as the ratio of the measured SpMxV performance, in
GFLOP/s, over the theoretical peak GFLOP/s achievable for each
platform.

The Core i7-2600 and Core i7-4770 processors achieved an
average performance of 2.01 and 4.59GFLOP/s, respectively,
across all 10 test matrices. The resulting computational
efficiencies were 1.84% and 2.11%. Overall, the computational
efficiency of both CPUs was 1-2% for all of the test matrices. The
Core i7-4770 processor was able to achieve a 2.28x speedup over
the Core i7-2600, despite only having 22% more memory
bandwidth, due to its more efficient memory accesses with its
larger vector processing cores.

The largest drops in performance for the CPUs were recorded
using the sparsest matrices: FEM/Ships, Economics, and

FEM/Accelerator. These matrices had a significantly higher rate
of cache misses due to their large size and overall sparsity. The
relativity small number of nonzero elements per row (especially
for the Economics matrix) also added significant overhead by
having to flush the pipeline more often.

Similarly, the GTX 660 and GTX Titan GPUs achieved an
average performance of 5.79 and 14.86 GFLOP/s, respectively
across all 10 matrices. The resulting computational efficiencies
were 0.31% and 0.33%. Overall, the computational efficiency of
both GPUs was between 0.2-0.5% for all of the test matrices. The
GTX Titan had an average speed up of 2.57x over the GTX 660
GPU, which is consistent with the GTX Titan having 2x the
memory bandwidth and 2.39x the number of processing cores as
the GTX 660. Because individual process threads are organized
differently on the GPU, each CUDA core had to be flushed far
less often than the CPU for the FEM/Ships, Economics, and
FEM/Accelerator matrices, leading to more even performance.

On the Linux test setup, the GTX 660 had an average speedup of
2.93x over the i7-2600 processor, and on the Windows setup, the
GTX Titan had a 3.23x speedup over the i7-4770 processor.
Despite the roughly 3x performance increase by the GPUs (Fig.
6), the CPUs are about 6x more computationally efficient than the
GPUs (Fig. 7). The GPUs use 100-300x more processing cores to
achieve a total, theoretical peak performance roughly 20x greater
than that of the CPU, but only have about 8x more memory
bandwidth. The cache structure of a GPU is smaller and has
higher latency that of a CPU [18,19]. GPUs are designed to mask
random memory accesses for computationally intensive
algorithms, leading to much larger penalties in efficiency for
cache misses when compared to a CPU.

The SpMxV kernel running on the Virtex-5 SX95T FPGA
achieved an average performance of 17.64GFLOP/s, for a
computational efficiency of 91.85%, across all 10 matrices. The
Dense matrix achieved a peak performance of 19.16GFLOP/s for
a computational efficiency of 99.8%. This performance represents
an average speedup of 9.55x and 4.18x over the i7-2600 and i7-
4770 CPUs and a 3.31x and 1.28x speedup over the GTX 660 and
GTX Titan GPUs. Moreover, the computational efficiency of the
FPGA SpMxV kernel had an average improvement of 54x and
322x over the CPUs and GPUs, respectively.

Table 2. Summary of unstructured matrices used for benchmarking performance (publically available from [16]).

 Matrix Rows Columns Nonzeros Nonzeros/Column Density

 Dense 2,000 2,000 4,000,000 2000.00 100.00000%
 Protein 36,417 36,417 4,344,765 119.31 0.32761%
 FEM/Spheres 83,334 83,334 6,010,480 72.13 0.08655%
 FEM/Cantilever 62,451 62,451 4,007,383 64.17 0.10275%
 Wind Tunnel 217,918 217,918 11,524,432 52.88 0.02427%
 FEM/Harbor 46,835 46,835 2,374,001 50.69 0.10823%
 QCD 49,152 49,152 1,916,928 39.00 0.07935%
 FEM/Ship 140,874 140,874 3,568,176 25.33 0.01798%
 Economics 206,500 206,500 1,273,389 6.17 0.00299%
 FEM/Accelerator 121,192 121,192 2,624,331 21.65 0.01787%

166

G
F

L
O

P
/s

0

5

10

15

20

25

FPGA (SX95T)

GPU (GTX 660)

CPU (i7-4770)

CPU (i7-2600)

GPU (GTX TITAN)

Figure 7. Raw computational performance of the CPU, GPU, and FPGA SpMxV kernels.

C
o

m
p

u
ta

ti
o

n
al

 E
ff

ic
ie

n
cy

 [
%

]

Den
se

Pro
te

in

FEM
/S

pher
es

FEM
/C

an
til

ev
er

W
in

d T
unnel

FEM
/H

ar
bor

QCD

FEM
/S

hip

Eco
nom

ic
s

FEM
/A

cc
el

er
at

or

Figure 8. Computational efficiency of the CPU, GPU, and FPGA SpMxV kernels.

167

The average power consumption of the i7-2600 and i7-4770
processors was measured to be 77.2W and 66.3W, respectively.
The resulting power efficiencies are 26MFLOP/s/W and
69MFLOP/s/W. Similarly, the average power of the GTX 660 and
GTX Titan were measured to be 99W and 163W, respectively.
The resulting power efficiencies are 58MFLOP/s/W and
91MFLOP/s/W. The worst case power of the SX95T FPGA was
measured to be 5.1W, resulting in a power efficiency of 3,460
MFLOP/s/W. This represents more than a 50x and 38x
improvement in energy efficiency over the CPU and GPU
implementations, respectively.

4.2 Comparison to Existing FPGA Art
In Table 3, we compare our proposed architecture to several
published SpMxV FPGA architectures. The architectures can be
categorized into 3 distinct groups. The first is to either re-encode,
reorder, or preprocess the sparse matrix in such a way as to reduce
data hazards [1,2]. Kestur et al. [1] re-encode the matrix into the
Compressed Variable-Length Bit Vector (CVBV) format (a
variation of the CSR format) on the fly to reduce the required
memory bandwidth. However, re-encoding the matrix insures a
significant overhead penalty, resulting in marginal efficiency
improvements over CPU and GPU implementations (only 3-10x).
Sun et al. [2] preprocess the matrix to reorganize and optimize the
datapath to eliminate hazards. After preprocessing, the matrices
achieve a computational efficiency of 96-99% on the FPGA.
Unfortunately, the preprocessing overhead (datapath optimization,
FPGA reconfiguration, and buffering the matrix on BRAM) is
about 20 times greater than that of the SpMxV calculation. This
results in an effective computational efficiency of only 5-7%.

The second approach is to use several PE (each with its own
working copy of x) in parallel with a reduction circuit or adder
tree to accumulate a single element of y [11,12]. In Zhuo et al.
[11], the partial product of 4 multipliers are added together via a
tree of 3 adders. The resulting sum is then fed into a novel
reduction circuit (accumulator) that handles the potential read-
after-write data hazards. The drawback of this approach is that it
requires zero padding to achieve a minimum row size. Combined
with blocking along the columns of A, the design is sensitive to

the sparsity structure of the matrix. The computational efficiency
ranges from 20% to 79%, performing particularly poorly for
extremely sparse matrices (<0.1% density). Zhang et al. [12]
improves upon this design by having each PE calculate a different
element of y. Their accumulator requires a minimum row length
of 8, zero padding when necessary, but can switch between any of
several different rows if it encounters a data hazard. This roughly
doubles the computational efficiency of the design as compared to
Zhuo et al. [11]. However, it still performs quite poorly for
extremely sparse matrices.

The final approach is to use the method outlined is Section 3 to
stream CSC matrix data through several PEs. Gregg et al. [13] use
a variant of CSC called the sparse matrix architecture and
representation (SPAR) format. In the SPAR format, row and ptr
are combined into a single vector with zero padding introduced at
the start of each column of the data vector. Each PE only buffers
a small portion of the y vector (32 elements vs. 3,456 elements in
our design) in a local cache. A y-cache miss requires a write-back
to high latency DRAM, incurring a 109 clock cycle penalty. With
such a small cache, the design is very highly sensitive to the
sparsity structure of the matrix. Computational efficiency ranges
from as low as 1% to as high as 74%.

Our architecture improves upon Gregg et al. [13] by buffering
much larger sections of the y vector (removing the need for a
costly write-back scheme) and the elimination of unnecessary
stalling due to zero padding (due to the SPAR format). Our design
is able to handle matrix densities below 0.01% (10x sparser than
prior FPGA designs) with computational efficiencies as high as
99.8%. Our drop in performance (and efficiency) for the
Economics matrix on the ROACH platform is due to the very
small number of nonzeroes per column, causing the x vector to
need more memory bandwidth than the QDRs can deliver. This
results in about 25% of the PEs being idled during any given
cycle. The FEM/Accelerator matrix, while similar in density to
the FEM/Ship matrix, alternates between being extremely dense
and extremely sparse along its columns, causing about 30% of the
PEs to be idled during any given clock cycle. This particular issue
can be alleviated by buffering the x vector on-chip like previous

Table 3. Comparison of FPGA SpMxV Architectures

 [1] [2] [11] [12] [13] This Work

FPGA
Virtex-5
LX155T

Stratix-III
EP3SE260

Virtex-II
Pro 70

Virtex-II
Pro 100

Virtex-II
6000

Virtex-5
SX95T

Frequency [MHz] 100 100 200 170 95 150
Memory Bandwidth [GB/s] 6.5 8.5 8 8.5 1.6 35.74
Number of PE 16 6 4 5 3 64
Peak Performance [GFLOP/s] 3.2 1.2 1.6 1.7 0.57 19.2
Matrix Format CVBV† COO CSR CSR SPAR* CSC
Sparse Test Matrix Density

MIN-MAX [%] 0.01-5.48 0.51-11.49 0.04-4.17 0.04-0.39 0.01-1.10 0.003-0.33
Average [%] 1.41 3.34 0.87 0.16 -- 0.09

Computational Efficiency
MIN-MAX [%] 1-7 5-7 20-79 50-98.4 1-74 69-99.8
Average [%] 4.48 5.63 42.6 79.4 55.6 91.9

 †Variant of CSR. *Variant of CSC.

168

FPGA designs. We estimate that this would increase the sustained
(average) computational efficiency from 91.85% to 98.29%.

5. CONCLUSIONS
This paper describes a SpMxV kernel using a CSC sparse-matrix
format, and demonstrates its computational efficiency using an
FPGA. The efficiency advantage of the kernel results from
transforming irregular random memory accesses into a
regularized stream of serial memory accesses. The benchmarking
results show that the proposed architecture achieves a peak
computational efficiency of 99.8% when performing SpMxV,
which is over 54 and 322 times more efficient than an Intel Core
i7-4770 processor and over an NVIDA GTX Titan GPU
performing the same tasks, respectively. Implemented on a
Virtex-5 SX95T FPGA, our design is able to achieve higher
performance than its CPU and GPU counterparts running
optimized sparse-BLAS software libraries, while only using 64
single-precision processing elements, with a 38-50x improvement
in energy efficiency.

6. ACKNOWLEDGMENTS
The authors would like to thank Yuta Toriyama and Fang-Li
Yuan of UCLA for their helpful discussions.

7. REFERENCES
[1] S. Kestur, J.D. Davis, and E.S. Chung, “Towards a Universal

FPGA Matrix-Vector Multiplication Architecture,” Int.
Symp. Field-Programmable Custom Comp. Mach. (FCCM
2012), pp. 9–16, May 2012.

[2] S. Sun, M. Monga, P.H. Jones, and J. Zambreno, “An I/O
Bandwidth-Sensitive Sparse Matrix-Vector Multiplication
Engine on FPGAs,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 59, no. 1, pp. 113–123, Jan. 2012.

[3] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and
N. Koziris, “Understanding the Performance of Sparse
Matrix-Vector Multiplication,” Euromicro Conf. Parallel,
Distributed and Network-Based Process. (PDP 2008), pp.
283–292, Feb. 2008.

[4] J. Sun, G. Peterson, and O. Storaasli, “Mapping Sparse
Matrix-Vector Multiplication on FPGAs,” Reconfigurable
Systems Summer Institute (RSSI 2007), July 2007.

[5] “Intel Math Kernel library.” [Online]. Available:
http://software.intel.com/en-us/intel-mkl

[6] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J.
Demme, “Optimization of sparse matrix-vector
multiplication on emerging multicore platforms,” in Proc.
ACM/IEEE Conf. Supercomputing (SC 2007), pp.1–12, Nov.
2007.

[7] “Nvidia cuBLAS.” [Online]. Available:
http://developer.nvidia.com/cublas

[8] “Nvidia cuSPARSE.” [Online]. Available:
http://developer.nvidia.com/cusparse

[9] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proc.
ACM/IEEE Conf. Supercomputing (SC 2009), pp. 18:1–
18:11, Nov. 2009.

[10] G. Kuzmanov and M. Taouil, “Reconfigurable sparse/dense
matrix-vector multiplier,” Int. Conf. Field-Programmable
Tech. (FPT 2009), pp. 483–488, Dec. 2009.

[11] L. Zhuo and V.K. Prasanna, “Sparse Matrix-Vector
multiplication on FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays (FPGA ‘05), pp. 63-74,
Feb. 2005.

[12] Yan Zhang, Y.H. Shalabi, R. Jain, K.K. Nagar, and J.D.
Bakos, “FPGA vs. GPU for sparse matrix vector multiply,”
Int. Conf. Field-Programmable Tech. (FPT 2009), pp. 255–
262, Dec. 2009.

[13] D. Gregg, C. McSweeney, C. McElroy, F. Connor, S.
McGettrick, D. Moloney, and D. Geraghty, “FPGA Based
Sparse Matrix Vector Multiplication using Commodity
DRAM Memory,” Int. Conf. Field Programmable Logic
Applicat. (FPL 2007), pp. 786-791, Aug. 2007.

[14] C.Y. Lin, H. K.-H. So, and P.H.-W. Leong, “A Model for
Matrix Multiplication Performance on FPGAs,” Int. Conf.
Field Programmable Logic Applicat. (FPL 2011), pp.305–
310, Sept. 2011.

[15] “ROACH.” [Online]. Available:
https://casper.berkeley.edu/wiki/ROACH

[16] T. A. Davis and Y. Hu., “The university of Florida sparse
matrix collection.,” ACM Trans. Math. Softw., vol. 38, no. 1,
pp. 1:1–1:25, Dec. 2011.

[17] P. Gepner, D. L. Fraser, and V. Gamayunov, “Evaluation of
the 3rd generation Intel Core Processor focusing on HPC
applications,” Int. Conf. Parallel Distrib. Process. Techn.
Applicat. (PDPTA 2012), pp. 818–823, July 2009.

[18] “NVIDIA GeForce GTX 680: The fastest, most efficient
GPU ever built.” [Online]. Available:
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-
GTX-680-Whitepaper-FINAL.pdf

[19] “Intel® Core™ i7-4770 Processor.” [Online]. Available:
http://ark.intel.com/products/75122/Intel-Core-i7-4770-
Processor-8M-Cache-up-to-3_90-GHz

[20] “Introducing the GeForce GTX TITAN.” [Online].
Available: http://www.geforce.com/whats-
new/articles/introducing-the-geforce-gtx-titan

169

