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ABSTRACT 
Sparse Matrix-Vector Multiplication (SpMxV) is a widely used 
mathematical operation in many high-performance scientific and 
engineering applications. In recent years, tuned software libraries 
for multi-core microprocessors (CPUs) and graphics processing 
units (GPUs) have become the status quo for computing SpMxV. 
However, the computational throughput of these libraries for 
sparse matrices tends to be significantly lower than that of dense 
matrices, mostly due to the fact that the compression formats 
required to efficiently store sparse matrices mismatches 
traditional computing architectures. This paper describes an 
FPGA-based SpMxV kernel that is scalable to efficiently utilize 
the available memory bandwidth and computing resources. 
Benchmarking on a Virtex-5 SX95T FPGA demonstrates an 
average computational efficiency of 91.85%. The kernel achieves 
a peak computational efficiency of 99.8%, a >50x improvement 
over two Intel Core i7 processors (i7-2600 and i7-4770) and 
showing a >300x improvement over two NVIDA GPUs (GTX 
660 and GTX Titan), when running the MKL and cuSPARSE 
sparse-BLAS libraries, respectively. In addition, the SpMxV 
FPGA kernel is able to achieve higher performance than its CPU 
and GPU counterparts, while using only 64 single-precision 
processing elements, with an overall 38-50x improvement in 
energy efficiency.   

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles—
Algorithms implemented in hardware; G.1.3 [Numerical 
Analysis]: Numerical Linear Algebra—Sparse, structured, and 
very large systems (direct and iterative methods) 

General Terms 
Algorithms, performance 

Keywords 
SpMxV, sparse-BLAS, FPGA, CPU, GPU, energy-efficiency, 
computational efficiency, benchmarking 
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1. INTRODUCTION 
Sparse matrices arise in a wide variety of computational 
disciplines, including image reconstruction, circuit and economic 
modeling, industrial engineering, compressive sensing, neural 
networks, and algorithms for least squares and eigenvalue 
problems [1-3]. As such, Sparse Matrix-Vector Multiplication 
(SpMxV) is the main computational kernel that dominates the 
performance of many of the aforementioned applications. 
Unfortunately, the performance of SpMxV algorithms tends to be 
much lower than that of dense matrices, mostly due to the 
mismatch between the memory access patterns of sparse matrices 
and the compression formats required to efficiently store them 
[3,4]. 

Numerous efforts have been made to accelerate the performance 
of SpMxV on multi-core microprocessors (CPUs) [5,6] and 
graphics processing units (GPUs) over the years [7-9]. Recently, 
field-programmable gate arrays (FPGAs) have become an 
attractive option for accelerating SpMxV [1-4,10-14]. FPGAs 
have high floating-point performance, large amounts of on-chip 
memory, and an abundant number of high-speed I/O pins capable 
of providing large amounts of off-chip memory bandwidth. The 
flexible nature of FPGAs also allows architectural adaptations to 
satisfy the needs of different problems.   

In this paper, we propose a scalable architecture for SpMxV with 
higher computational efficiency than traditional CPU/GPU-based 
approaches. Computational efficiency is a measure of the 
percentage of the total hardware resources available that are 
actively being used by an algorithm. An implementation of an 
algorithm with a higher computational efficiency will therefore be 
more energy-efficient. We leverage the structure of conventional 
sparse matrix compression formats for general sparse matrices in 
order to regularize their memory access patterns. The 
benchmarking results based on the FPGA implementation show 
that the proposed SpMxV kernel can reach significantly higher 
computational efficiency than state-of-the-art solutions using 
CPUs and GPUs, with more than a 50x and 300x improvement 
respectively. Even for very large, irregular, sparse matrices, our 
design can achieve performance comparable to that of dense 
matrices. 

The remainder of the paper is organized as follows. Section 2 
introduces SpMxV and discusses the inefficiencies present in 
existing software (powered by CPUs and GPUs) and hardware 
(FPGA) implementations. Section 3 details the proposed 
architecture to address these short comings. Benchmarking results 
on computational throughput and energy efficiency are presented 
in Section 4. Section 5 concludes the paper. 
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2. SPARSE MATRIX-VECTOR 
MULTIPLICATION 
SpMxV is a mathematical kernel that takes the form of: 

 ,y Ax  (1) 

where A is an M×N sparse matrix (the majority of the elements 
are zero), y is an M×1 vector, and x is an N×1 vector. More 
generally, SpMxV can be represented as: 

 ,y Ax    (2) 

where α and β are scalars. 

The performance of sparse-matrix algorithms tends to be much 
lower than that of dense matrices due to two key factors: (1) the 
way the sparse matrix is represented in memory and (2) the 
computation architecture of the target platform. 

2.1 Sparse Matrix Representation 
There are a variety of ways to represent the sparse matrix for 
storage purposes. However, the few computationally efficient 
formats are restricted to highly structured matrices, such as 
diagonal or banded matrices. In this paper, we focus on boosting 
the efficiency of SpMxV for generic sparse matrices. Therefore, 
we only present general sparse storage schemes in this section. 

Figure 1 illustrates a sample sparse matrix and three different 
schemes to represent it. The simplest storage scheme, shown in 
Fig. 1(b), is the coordinate (COO) format. The row indices, 
column indices, and values of the nonzero matrix entries are 
explicitly stored in 3 separate arrays: row, col, and data. The 
compressed sparse row (CSR) format (Fig. 1(c)) is the most 
commonly used sparse storage scheme, which also stores the 
column indices and nonzero values into the arrays: col and data. 

Unlike the COO format, the row indices are not explicitly stored, 
but rather as an array of row pointers, ptr. The ith element of ptr 
corresponds to the offset of the ith row into the col and data 
arrays. For example, in Fig.1(c) the first element of ptr is 0, 
indicating that the first element in row 0 is 1 and is located in 
column 0; the second element of ptr is 2, indicating that the first 
element in row 1 is 2 and is located in column 1; the third element 
of ptr is 4, indicating that the first element in row 2 is 5 and is 
located in column 5; and so on. For an M×N matrix, ptr has M+1 
elements in the CSR format, with the final element indicating the 
total number of nonzero entries in the matrix. The compressed 
sparse column (CSC) format, used in our SpMxV kernel, is a 
variation of the CSR format (Fig. 1(d)). Instead of storing the 
column indices and an array of row pointers, the CSC stores the 
row indices and an array of column pointers. For any matrix A, 
the CSR storage of A is exactly the same as the CSC storage of 
AT.  

2.2 Existing SpMxV Architectures 
Specialized software libraries for solving dense and sparse linear 
algebra problems are very popular for high-performance 
computing. These libraries, such as MKL [5] for CPUs, and 
cuBLAS [7] and cuSPARSE [8] for GPUs, provide a standardized 
programming interface, with subroutines optimized for the target 
platform. 

For SpMxV on CPUs and GPUs, the ith element of y is typically 
calculated as the dot-product of the ith row of A and the vector x 
(Fig. 2). This is because each computing core usually contains only 
a handful of general purpose registers and a single floating-point 
unit (FPU). Therefore, CSR is one of the most computationally 
efficient storage options for sparse matrices on CPUs and GPUs. It 
has the added benefit of being easily parallelizable: each 
computing core can be independently assigned a different value of 
y to calculate. 

Improving the parallel performance of SpMxV via blocking 
(splitting up the matrix into several sub-matrices) and 
modifications to the CRS format is a very active area of study 
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Figure 1. The sparse matrix representation for (a) an example 
matrix A in the (b) COO, the (c) CSR, and the (d) CSC 
formats. 

Figure 2. A graphical representation of how SpMxV is 
performed using the CSR format on CPUs and GPUs. Each 
element in y is calculated as the dot product between the 
appropriate row of A and the vector x. 
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[3,6,9]. Unfortunately, the use of CSR, and its variants, for SpMxV 
have several drawbacks on CPUs and GPUs that hurts its overall 
computational efficiency [3]: 

(1) The SpMxV kernel is memory-bounded. CPUs and GPUs 
typically have much larger computational throughput than 
available memory bandwidth. This leads to a very low 
utilization rate for the computing resources, and 
subsequently, poor energy efficiency. 

(2) The indirect (global) memory references for the vector x 
present in col adds uncertainty to the memory access pattern, 
ultimately delaying the computation. Each element of col 
must first be loaded from memory and added to the address 
of x as an offset. Only then can the correct value of x be 
loaded into the FPU for computation. 

(3) Irregular memory access of vector x causes a large number of 
cache misses. In CPUs, this cache miss can add tens of 
cycles of latency. In GPUs, a cache miss can add hundreds of 
cycles of latency. GPUs typically try to hide these large 
latencies by interleaving dozens of threads on a single 
computational core. This works well for computation-
bounded algorithms, but not memory-bounded algorithms 
like SpMxV. 

(4) Short row lengths (i.e. very few nonzero elements per row) 
can cause serious performance degradation. When rows are 
short, the overhead associated with calculating each element 
of y becomes significant. 

Due to these drawbacks, CPUs and GPUs reach less than 5% of 
their theoretical peak processing throughput and utilize less than 
50% of their available memory bandwidth for SpMxV [6,9]. 

Previous FPGA implementations have attempted to alleviate these 
inefficiencies by introducing several architectural changes. In 
some designs, several processing elements (PEs) work together to 
compute a single element of y in parallel [1,4,12]. These designs 
employ various reduction circuits in order to combine the 
intermediary results. Other designs have each PE calculate several 
elements of y in a sequential manner in order to mitigate the effect 
of short rows [2,10,12]. In both cases, the entirety of the x vector, 
or a large subsection (in the case of blocking), is buffered in on-
chip Block RAM (BRAM) to reduce the effects of irregular 
memory accesses [1-4,10-13]. However, these prior 
implementations primarily focus on reducing the total number of 

adders and their resource usage in the design. As such, they only 
average less than 50% of their theoretical peak processing 
throughput and memory bandwidth [1-4,10-14]. 

3. PROPOSED ARCHITECTURE 
Our architecture abandons the idea of calculating each element of 
y separately as the row-wise dot product between A and x. Instead, 
the entirety of y is calculated as the column-wise vector additions 
of A weighted by each element of x, as shown in Fig. 3. 
Fundamentally, this allows us to directly address the major 
limitations present in the SpMxV algorithm when implemented on 
an FPGA: 

(1) A dedicated co-processor allows for much better balancing 
of system resources. The number of processing elements 
(PEs) can be efficiently scaled to match the available 
memory bandwidth. 

(2) What used to be indirect (global) memory references for x in 
col vector (for the CSR format) are now direct (local) 
memory references for y in the row vector. In other words, 
when a column of A is multiplied by an element of x, in the 
manner shown in Fig. 3, we know exactly which elements of 
y the partial product contributes to. This allows us to halve 
the number of require memory accesses, the largest 
bottleneck in the SpMxV algorithm. 

(3) Memory access to the x vector is no longer irregular, but 
sequential. By using the CSC format to store A, both A and x 
can be placed in a large off-chip memory and sequentially 
streamed into the DSP co-processor (eliminating the time 
and energy overheads of a cache miss). 

(4) Short row or column lengths have much less impact on the 
performance of SpMxV, since the PEs are rarely idled thanks 
to the balanced memory bandwidth and computing 
capability. However, performance is degraded as the 
memory bandwidth of x approaches that of A for extremely 
sparse matrices. In the rare case of M  N, the performance 
of CSC is no better than that of CSR. 

Figure 3. A graphical representation of how SpMxV is
performed using the CSC format. The entire vector y is 
calculated as a series of vector additions of the columns of A
weighted by the appropriate element from x. 

Figure 4. Schematic of a single PE using a simple dual-port 
RAM, floating-point adder, and a floating-point multiplier. 
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Computing the SpMxV column-wise also allows for an extremely 
simple PE (Fig. 4). Each PE contains a single-precision floating-
point adder and multiplier, as well as a simple dual-port RAM. 
Each simple dual-port RAM utilizes the large amounts of BRAM 
resources available on FPGAs and can accommodate several 
hundred to several thousand elements of y. Figure 5 shows the 
overall experiment setup, in which the SpMxV kernel 
(implemented on an FPGA) serves as a co-processor attached to 
an external computer. A dedicated memory controller allows the 
elements of A and x to be continuously streamed into the FPGA, 
while the SpMxV controller’s primary function is scheduling and 
hazard detection. Hazard detection avoids the conflict between 
two partial products that contribute to the same element of y 
overlapping due to the latency of the floating-point adder. If such 
a hazard is detected, we must either stall or provide alternative 
data to ensure that the result of y is calculated correctly. 

3.1 Processing Element 
As stated previously, each PE (Fig. 4) contains a single-precision 
floating-point adder and multiplier, as well as a simple dual-port 
RAM. To perform the SpMxV, each PE multiplies an element of 
the data vector (Aij) and the corresponding element of the x vector 
(Xj) together. The resulting partial product is then added to 
address in the row vector (i), before being stored back into the 
BRAM of the dual-port RAM. Due to the latency of the 
multiplication and addition operations, a Valid signal is used to 
prevent data corruption due to hazards. Using this strategy, data 
can be continuously streamed into each PE (directly from the 
CSC format) with a small startup overhead latency equal to that of 
the adder and the multiplier. 

Since each PE has its own working copy of the vector being 
computed, there are two possible strategies for assembling the 
final vector. The first option is to assign a subset of the x vector to 
each PE (i.e. blocking along the columns of A). Each PE 
computes a partial sum of the final vector and an adder tree 
(which can be built from the existing adders in each PE) is used to 
combine them at the end. Similar to prior FPGA implementations 
[1-4,10-13], this straightforward approach has several drawbacks. 

First, the reduction circuit adds a large amount of overhead in 
terms of latency and additional hardware (even if existing adders 
are used, more resources are needed for configurability). Second, 
by splitting up computation along the columns, we lose some of 
the sequential nature of the memory accesses we had gained with 
the CSC format. The memory accesses for each PE are still 
sequential, but globally the memory accesses for all PEs are 
irregular. To mitigate this, a more complicated memory controller 
is required to ensure a balanced load across all of the PEs. Third, 
if there are fewer columns than PEs, this approach is effectively 
no different than prior FPGA implementations. 

The second option for computing the final vector is to assign a 
subset of rows of A to each PE (i.e. blocking along the rows of A). 
Each PE computes a subset of the final vector, which are then 
concatenated together at the end (requiring no additional latency). 
Additionally, this preserves the property of sequential memory 
accesses across all PEs, allowing for a much simpler memory 
controller (at the cost of a slightly more complicated SpMxV 
controller to handle additional scheduling and hazard detection). 
Finally, with minor modifications to the SpMxV and memory 
controllers, our SpMxV kernel can also support a sparse matrix 
dense matrix multiplication (SpMxM): each column of the dense 
matrix is assigned to a PE, which each PE computing a single 
column of the resulting matrix. Our SpMxV kernel uses this 
option, with the modifications to support SpMxM, in its 
implementation. 

3.2 SpMxV and Memory Controller 
The primary purposes of the SpMxV controller are scheduling 
and hazard detection. The memory controller acts as a slave to the 
SpMxV controller, ensuring a continuous stream of data into the 
PEs. Hazards arise when two or more partial products want to 
write to the same memory address of the dual-port RAM in a 
short period of time. Due to the latency of the floating-point adder 
in Fig. 4, the existing sum of the partial products in the dual-port 
RAM must be prefetched. If two partial products that contribute 
to the same term are allowed to proceeded, the second product 
will prefetch a sum that does not include the first product. The 
result is that the final sum of products will not include the first 
conflicting partial product. The SpMxV controller detects these 
hazards and corrects them in one of two ways. It first attempts to 
shuffle the partial products to increase their distance in time. If 
this is not possible, or would result in additional hazards, the 
SpMxV controller issues a stall command to the PE (by 
deasserting the Valid signal, and holding the values of Aij, Xj, and 
i). 

Figure 6 shows the stalling behavior for a single processing 
element performing SpMxV between the example A matrix from 
Fig. 1(a) and the vector x = [0.1 0.2 0.3 0.4 0.5]T. In the example, 
the latency of the floating-point multiplier and adder are both 2 

Table 1. Resource usage for the SpMxV kernel (64 PEs).

Resource Used Available Percent 

Registers 31,621 58,880 53.70% 

LUTs 27,958 58,880 47.48% 

BRAMs 160 244 65.57% 

DSP48Es 320 640 50.00% 

 

Memory Controller

QDR0

SpMxV 
Controller

Processing Element
FPGA

QDR1

Scheduling &
Hazard Detection

DRAM

Processing Element

Processing Element

Processing Element

Processing Element

Processing Element

Figure 5. Top-level schematic of the SpMxV kernel, with 8
processing elements, running on the ROACH FPGA platform.
The SpMxV kernel acts as a coprocessor for a networked
computer running a MATLAB environment. 
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clock cycles. Additionally, the simple dual-port memory (Y) has a 
latency of 1 clock cycle. In cycle 2, a hazard is detected due to the 
proximity of the partial product of 1×0.1 and the partial product 
of 4×0.2. We must stall for 2 cycles—by deasserting Valid and 
holding the values of Aij, Xj, and i—to ensure that partial product 
of 1×0.1 is added to Y before continuing. If co-processor had not 
stalled, the partial product of 4×0.2 would have added itself to the 
current value of Y, 0, producing an incorrect final value of 0.8 
(instead of 0.9). Computation resumes in cycle 5, after the hazard 
has passed. Additional hazards are detected in cycles 6 and 12, 
with each hazard resulting in 3 clock cycles of stalling. 

4. PERFORMANCE EVALUATION 
The SpMxV kernel was evaluated on the open-source academic 
research platform “ROACH” (Reconfigurable Open Architecture 
Computing Hardware) [15].  The ROACH platform is equipped 
with a Virtex-5 SX95T FPGA for DSP applications, a PowerPC 
running Linux, two 36Mb QDRII+ SRAMs, and 2GB of DDR2 
SDRAM for a combined peak memory bandwidth of 35.74 GB/s. 
The PowerPC allows a computer running MATLAB to interface 
with “software registers,” BRAMs, and FIFOs on the FPGA, as 
well as to load data in and out of the board-level QDRs and 
DRAM (Fig. 5).  

Table 1 show the total resource usage of the SpMxV kernel 
implemented with 64 PEs using a single-precision floating-point 
format. The SX95T FPGA can support up to 96 single-precision 
PE (using 98.4% of the available BRAM), but is ultimately 
limited by our available memory bandwidth. The CSC A matrix is 
stored in the SDRAM, while the x and y vectors are stored in the 
two QDRs. The QDRs are accessed in parallel to effectively 
create a single memory with twice the bit width. The ROACH 
board can operate up to 150MHz (limited by the QDR memory 
controller), resulting in a peak performance of 19.2 GFLOP/s with 
a thermal design power (TDP) of 25W. 

4.1 Comparison to CPUs and GPUs 
We use a collection of 10 unstructured matrices used by both 
Williams et al. [6] and Bell et al. [9] in our performance 
benchmarking study. Table 2 details the size and overall sparsity 
structure of each matrix. All of the matrices are publically 
available online from the University of Florida Sparse Matrix 
Collection [16]. For comparison, the same benchmarks are run on 
both a 64-bit Linux machine and a 64-bit Windows machine. 

The Linux machine has 16GB of memory and an Intel Core i7-
2600 processor (4 physical cores with hyper-threading, for a total 
of 8 virtual cores), using the MKL sparse-BLAS library [5]. The 
Core i7-2600 processor has a peak memory bandwidth of 21GB/s 
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Figure 6. Timing diagram for calculating the SpMxV of the example A matrix from Fig. 1(a) and x = [0.1 0.2 0.3 0.4 0.5]T using a 
single PE. For this example, the floating-point adder and multiplier both have a latency of 2 clock cycles and the simple dual-port 
memory (Y) has a latency of 1 clock cycle. 
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with a peak performance of 108.8GFLOP/s and a TDP of 95W 
[17]. The benchmarks were also run on an NVIDIA GeForce 
GTX 660 graphics card (960 CUDA cores), installed on the same 
Linux machine, using the cuSPARSE library [8]. The GPU has a 
peak memory bandwidth of 144.2GB/s and a peak performance of 
1881.6GFLOP/s with a TDP of 140W [18]. 

The Windows machine has 32GB of memory and an Intel Core 
i7-4770 processor (4 physical cores with hyper-threading, for a 
total of 8 virtual cores), using the MKL sparse-BLAS library [5]. 
The Core i7-4770 processor has a peak memory bandwidth of 
25.6GB/s and a peak performance of 217.6GFLOP/s with a TDP 
of 84W [19]. The benchmarks were also run on an NVIDIA 
GeForce GTX Titan graphics card (2688 CUDA cores), installed 
on the same Windows machine, using the cuSPARSE library [8]. 
The GPU has a peak memory bandwidth of 288.4GB/s and a peak 
performance of 4,500GFLOP/s with a TDP of 250W [20]. 

Figure 7 compares the raw computational performance (in 
GFLOP/s) of the CPU, GPU, and FPGA SpMxV kernels for all of 
the matrices tested. SpMxV on the two CPUs showed a 
performance drop of 20-50% compared to dense matrices, while 
the two GPUs showed a performance drop of 30-60%. Figure 8 
compares the computational efficiency of the CPU, GPU, and 
FPGA SpMxV kernels for all of the matrices tested. For a 
memory bound algorithm like SpMxV, the computational 
efficiency is strongly determined by the memory hierarchy (i.e. 
the cache structure and size). The computational efficiency is 
calculated as the ratio of the measured SpMxV performance, in 
GFLOP/s, over the theoretical peak GFLOP/s achievable for each 
platform. 

The Core i7-2600 and Core i7-4770 processors achieved an 
average performance of 2.01 and 4.59GFLOP/s, respectively, 
across all 10 test matrices. The resulting computational 
efficiencies were 1.84% and 2.11%. Overall, the computational 
efficiency of both CPUs was 1-2% for all of the test matrices. The 
Core i7-4770 processor was able to achieve a 2.28x speedup over 
the Core i7-2600, despite only having 22% more memory 
bandwidth, due to its more efficient memory accesses with its 
larger vector processing cores.  

The largest drops in performance for the CPUs were recorded 
using the sparsest matrices: FEM/Ships, Economics, and 

FEM/Accelerator. These matrices had a significantly higher rate 
of cache misses due to their large size and overall sparsity. The 
relativity small number of nonzero elements per row (especially 
for the Economics matrix) also added significant overhead by 
having to flush the pipeline more often.  

Similarly, the GTX 660 and GTX Titan GPUs achieved an 
average performance of 5.79 and 14.86 GFLOP/s, respectively 
across all 10 matrices. The resulting computational efficiencies 
were 0.31% and 0.33%. Overall, the computational efficiency of 
both GPUs was between 0.2-0.5% for all of the test matrices. The 
GTX Titan had an average speed up of 2.57x over the GTX 660 
GPU, which is consistent with the GTX Titan having 2x the 
memory bandwidth and 2.39x the number of processing cores as 
the GTX 660. Because individual process threads are organized 
differently on the GPU, each CUDA core had to be flushed far 
less often than the CPU for the FEM/Ships, Economics, and 
FEM/Accelerator matrices, leading to more even performance. 

On the Linux test setup, the GTX 660 had an average speedup of 
2.93x over the i7-2600 processor, and on the Windows setup, the 
GTX Titan had a 3.23x speedup over the i7-4770 processor. 
Despite the roughly 3x performance increase by the GPUs (Fig. 
6), the CPUs are about 6x more computationally efficient than the 
GPUs (Fig. 7). The GPUs use 100-300x more processing cores to 
achieve a total, theoretical peak performance roughly 20x greater 
than that of the CPU, but only have about 8x more memory 
bandwidth. The cache structure of a GPU is smaller and has 
higher latency that of a CPU [18,19]. GPUs are designed to mask 
random memory accesses for computationally intensive 
algorithms, leading to much larger penalties in efficiency for 
cache misses when compared to a CPU. 

The SpMxV kernel running on the Virtex-5 SX95T FPGA 
achieved an average performance of 17.64GFLOP/s, for a 
computational efficiency of 91.85%, across all 10 matrices. The 
Dense matrix achieved a peak performance of 19.16GFLOP/s for 
a computational efficiency of 99.8%. This performance represents 
an average speedup of 9.55x and 4.18x over the i7-2600 and i7-
4770 CPUs and a 3.31x and 1.28x speedup over the GTX 660 and 
GTX Titan GPUs. Moreover, the computational efficiency of the 
FPGA SpMxV kernel had an average improvement of 54x and 
322x over the CPUs and GPUs, respectively. 

Table 2. Summary of unstructured matrices used for benchmarking performance (publically available from [16]).

  Matrix  Rows Columns Nonzeros  Nonzeros/Column  Density 

  Dense  2,000  2,000 4,000,000 2000.00 100.00000% 
  Protein  36,417 36,417 4,344,765 119.31 0.32761% 
  FEM/Spheres  83,334 83,334 6,010,480 72.13 0.08655% 
  FEM/Cantilever  62,451 62,451 4,007,383 64.17 0.10275% 
  Wind Tunnel 217,918 217,918 11,524,432 52.88 0.02427% 
  FEM/Harbor  46,835 46,835 2,374,001 50.69 0.10823% 
  QCD  49,152 49,152 1,916,928 39.00 0.07935% 
  FEM/Ship  140,874 140,874 3,568,176 25.33 0.01798% 
  Economics  206,500 206,500 1,273,389 6.17 0.00299% 
  FEM/Accelerator  121,192 121,192 2,624,331 21.65 0.01787% 
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Figure 7. Raw computational performance of the CPU, GPU, and FPGA SpMxV kernels. 
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Figure 8. Computational efficiency of the CPU, GPU, and FPGA SpMxV kernels. 

167



The average power consumption of the i7-2600 and i7-4770 
processors was measured to be 77.2W and 66.3W, respectively. 
The resulting power efficiencies are 26MFLOP/s/W and 
69MFLOP/s/W. Similarly, the average power of the GTX 660 and 
GTX Titan were measured to be 99W and 163W, respectively. 
The resulting power efficiencies are 58MFLOP/s/W and 
91MFLOP/s/W. The worst case power of the SX95T FPGA was 
measured to be 5.1W, resulting in a power efficiency of 3,460 
MFLOP/s/W. This represents more than a 50x and 38x 
improvement in energy efficiency over the CPU and GPU 
implementations, respectively. 

4.2 Comparison to Existing FPGA Art 
In Table 3, we compare our proposed architecture to several 
published SpMxV FPGA architectures. The architectures can be 
categorized into 3 distinct groups. The first is to either re-encode, 
reorder, or preprocess the sparse matrix in such a way as to reduce 
data hazards [1,2]. Kestur et al. [1] re-encode the matrix into the 
Compressed Variable-Length Bit Vector (CVBV) format (a 
variation of the CSR format) on the fly to reduce the required 
memory bandwidth. However, re-encoding the matrix insures a 
significant overhead penalty, resulting in marginal efficiency 
improvements over CPU and GPU implementations (only 3-10x). 
Sun et al. [2] preprocess the matrix to reorganize and optimize the 
datapath to eliminate hazards. After preprocessing, the matrices 
achieve a computational efficiency of 96-99% on the FPGA. 
Unfortunately, the preprocessing overhead (datapath optimization, 
FPGA reconfiguration, and buffering the matrix on BRAM) is 
about 20 times greater than that of the SpMxV calculation. This 
results in an effective computational efficiency of only 5-7%. 

The second approach is to use several PE (each with its own 
working copy of x) in parallel with a reduction circuit or adder 
tree to accumulate a single element of y [11,12]. In Zhuo et al. 
[11], the partial product of 4 multipliers are added together via a 
tree of 3 adders. The resulting sum is then fed into a novel 
reduction circuit (accumulator) that handles the potential read-
after-write data hazards. The drawback of this approach is that it 
requires zero padding to achieve a minimum row size. Combined 
with blocking along the columns of A, the design is sensitive to 

the sparsity structure of the matrix. The computational efficiency 
ranges from 20% to 79%, performing particularly poorly for 
extremely sparse matrices (<0.1% density). Zhang et al. [12] 
improves upon this design by having each PE calculate a different 
element of y. Their accumulator requires a minimum row length 
of 8, zero padding when necessary, but can switch between any of 
several different rows if it encounters a data hazard. This roughly 
doubles the computational efficiency of the design as compared to 
Zhuo et al. [11]. However, it still performs quite poorly for 
extremely sparse matrices. 

The final approach is to use the method outlined is Section 3 to 
stream CSC matrix data through several PEs. Gregg et al. [13] use 
a variant of CSC called the sparse matrix architecture and 
representation (SPAR) format. In the SPAR format, row and ptr 
are combined into a single vector with zero padding introduced at 
the start of each column of the data vector. Each PE only buffers 
a small portion of the y vector (32 elements vs. 3,456 elements in 
our design) in a local cache. A y-cache miss requires a write-back 
to high latency DRAM, incurring a 109 clock cycle penalty. With 
such a small cache, the design is very highly sensitive to the 
sparsity structure of the matrix. Computational efficiency ranges 
from as low as 1% to as high as 74%. 

Our architecture improves upon Gregg et al. [13] by buffering 
much larger sections of the y vector (removing the need for a 
costly write-back scheme) and the elimination of unnecessary 
stalling due to zero padding (due to the SPAR format). Our design 
is able to handle matrix densities below 0.01% (10x sparser than 
prior FPGA designs) with computational efficiencies as high as 
99.8%. Our drop in performance (and efficiency) for the 
Economics matrix on the ROACH platform is due to the very 
small number of nonzeroes per column, causing the x vector to 
need more memory bandwidth than the QDRs can deliver. This 
results in about 25% of the PEs being idled during any given 
cycle. The FEM/Accelerator matrix, while similar in density to 
the FEM/Ship matrix, alternates between being extremely dense 
and extremely sparse along its columns, causing about 30% of the 
PEs to be idled during any given clock cycle. This particular issue 
can be alleviated by buffering the x vector on-chip like previous 

Table 3. Comparison of FPGA SpMxV Architectures

 [1] [2] [11] [12] [13] This Work 

FPGA 
Virtex-5 
LX155T 

Stratix-III 
EP3SE260 

Virtex-II 
Pro 70 

Virtex-II 
Pro 100 

Virtex-II 
6000 

Virtex-5 
SX95T 

Frequency [MHz] 100 100 200 170 95 150 
Memory Bandwidth [GB/s] 6.5 8.5 8 8.5 1.6 35.74 
Number of PE 16 6 4 5 3 64 
Peak Performance [GFLOP/s] 3.2 1.2 1.6 1.7 0.57 19.2 
Matrix Format CVBV† COO CSR CSR SPAR* CSC 
Sparse Test Matrix Density       

MIN-MAX [%] 0.01-5.48 0.51-11.49 0.04-4.17 0.04-0.39 0.01-1.10 0.003-0.33 
Average [%] 1.41 3.34 0.87 0.16 -- 0.09 

Computational Efficiency       
MIN-MAX [%] 1-7 5-7 20-79 50-98.4 1-74 69-99.8 
Average [%] 4.48 5.63 42.6 79.4 55.6 91.9 

   †Variant of CSR. *Variant of CSC. 
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FPGA designs. We estimate that this would increase the sustained 
(average) computational efficiency from 91.85% to 98.29%. 

5. CONCLUSIONS 
This paper describes a SpMxV kernel using a CSC sparse-matrix 
format, and demonstrates its computational efficiency using an 
FPGA. The efficiency advantage of the kernel results from 
transforming irregular random memory accesses into a 
regularized stream of serial memory accesses. The benchmarking 
results show that the proposed architecture achieves a peak 
computational efficiency of 99.8% when performing SpMxV, 
which is over 54 and 322 times more efficient than an Intel Core 
i7-4770 processor and over an NVIDA GTX Titan GPU 
performing the same tasks, respectively. Implemented on a 
Virtex-5 SX95T FPGA, our design is able to achieve higher 
performance than its CPU and GPU counterparts running 
optimized sparse-BLAS software libraries, while only using 64 
single-precision processing elements, with a 38-50x improvement 
in energy efficiency. 
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