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ABSTRACT
Running is a popular exercise for all age groups. It helps heart and
lung functions, enhances muscle strength and control weight. Nev-
ertheless, excessive fatigue and severe injury resulting from inap-
propriate running poses might reduce the benefits brought by this
exercise and stop people from keeping running regularly. In this
paper, we design a system that can monitor the running biome-
chanics, infer running poses, analyze running patterns, and provide
both real-time and off-line feedbacks to reduce unnecessary fatigue
and unwanted injuries. Common inappropriate running patterns,
over-striding, over-pronating and out-sync, are identified and ana-
lyzed with the continuous wearable sensor data streams. Two types
of correctional feedbacks are designed to provide users appropriate
adjustment guidance: vibrating the areas of user body where im-
proper poses are detected and visualizing running video with sen-
sor waveforms to indicate which inappropriate motions trigger the
vibration. With reasonable adjustment, running can be a safe and
effective activity for a healthy lifestyle.

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation (e.g. HCI)]:
Miscellaneous

General Terms
Design; Measurement; Running; Wearable Computing; Motion De-
tection and Activity Recognition.

1. INTRODUCTION
Running is a great means to keep the body healthy; moreover, it
may enhance brain health and plasticity [6]. A research [8] among

aging runners also indicates that running can benefit health and
cognitive function, and running can slow down ability declination.
What is more, a public health research [13] indicates other exer-
cises cannot replace running when dealing with adiposity. Running
properly may seem like an inborn ability, but realistically it is a
skill that needs to be learned and practiced. Running in improper
poses may lead to injuries and other issues. Over-striding and over-
pronation can be two serious mistakes in running, as they will bring
injuries such as shin splints [1]. In addition, people increase fatigue
rate as performing those improper movements wastes energy. To
diminish these issues, in this paper we present the technology of
using sensors to help people correct their running posture.

A number of researches [16, 5, 14, 12, 15] and products [2, 3, 4]
make use of body sensor networks to track and analyze users’ mo-
tion during exercise. However, they are generalized to monitor sev-
eral exercises rather than to focus on running motion correction.
These existed attempts do not provide feedback and cannot effi-
ciently prevent injuries due to bad running habits.

The first step is to detect specific motions during a runner’s stride
that can often lead to inefficiency and injury. An efficient runner’s
stride consists of a sequence of motions that correlate properly to
create safe and efficient movements. When incorrect motion oc-
curs, a chain effect is developed in which the body reacts to com-
pensate for these motions. Consequently, the compensatory mo-
tions lead to further inefficiency and increase the risk of injury. Af-
ter detecting running mistakes, our system will send correctional
feedback to the user. The vibration feedback, on user’s body where
exhibits improper motion, can lead to a safe and efficient stride at
the subconscious level. Graphical feedback, showing running video
with waveforms from sensor data, helps users understand their im-
proper running style.

2. RELATED WORK
Commercial products in exercise monitoring become popular these
days, Fitbit Flex [2], Jawbone Up [3] and Nike+ Fuelband [4] are
three best selling wristband among US. They have similar func-
tions: set exercise goal for the user, monitor users’ activities and
reward users by sharing exercise record with the user community.
These products aim at determining whether the user is doing exer-



cise and estimate calories consumed. They do not classify which
exercise user is doing and cannot correct user’s exercise pattern.

Researchers also use body sensor network to track and analyze
users’ motion during exercise. One research [12] attempts to use
wearable sensors to analyze runner performance comparing with
professional athletes. However, it only discriminates different per-
formance groups based on vertical oscillation and foot contact, with-
out detecting improper running patterns to notify runners. My-
HealthAssistant [10], a phone-based body sensor network, uses
3D inertial sensors to capture user’s exercises. It recognizes ex-
ercise patterns, counts exercise times and provides a fitness diary
with heart rate and other health information. Another research [9]
also tries to recognize user activity from accelerometer data, using
base-level classifiers and meta-level classifiers. Although last two
researches can be accurate in determining which exercise is per-
formed, they are not designed to determine the quality and correct-
ness of exercise. Exercise counts and quality are both important,
because if the user does exercise in the wrong manner, it may hurt
rather than help. Therefore, running posture correction is necessar-
ily needed.

3. SYSTEM OVERVIEW
We first develop algorithms to detect over-striding, over-pronation,
and improper correlation between the runner’s limbs. These motion
patterns are common among runners who run improperly. After
recognition, our system sends correctional feedback to the user. As
the runner instructs muscles to move at a relative high speed during
the stride, it is very difficult for the user to detect his/her own mo-
tions at the conscious level. Our system triggers vibrational feed-
back on the part of body where exhibits improper running motion.
This feedback warns user in a short time and improves running mo-
tion at the subconscious level to produce a safer and more efficient
stride. Our system also provides running video feedback with syn-
chronized waveforms from sensors on body. This feedback will
allow users to see which improper motion triggers the vibration
feedback.

Our system uses Microleap2 platforms which have accelerometers
and gyroscopes. Due to sensor noise, accelerometers and gyro-
scopes are more suitable in detecting motion than precise angles,
distances, or positions. Thus, we focus on the relevant body parts
motions instead of exact position of movement.

4. SYSTEM DESIGN
4.1 Data Collection
As seen in Figure 1, running data is collected by five microleap2
devices located on the runner’s elbows, knees, and waist. The mi-
croleap2 devices transmit data over Bluetooth to a paired laptop.
We collect data with the subject running on a treadmill through
btrelay and btclient software in Professor Kaiser’s lab. These soft-
ware produce a file stream associated with each device and work
well with multiple sensors. The data from each of the sensor are
synchronized at 60Hz sampling rate for each microleap2 device.
This sampling rate provides us with high enough resolution to cap-
ture a runner’s movement without bandwidth issue. Our system
also records running video so that the runner can see his/her mo-
tions with sensor data.

4.2 Signal Processing
The first step of signal processing is to generate frames. The frame
size in our system is 180 samples in each 3 seconds. This frame size

Figure 1: The placement of the Microleap2 devices.

ensures to get enough data for three to five strides and also keeps
the temporal resolution high enough to trigger feedback for current
movement without noticeable delay. After acquiring the frames,
our system starts to detect over-striding and over-pronation.

Figure 2: Left: Not over-striding X-axis acceleration. Right:
Over-striding X-axis acceleration.

Over-striding occurs when runner’s foot strikes the ground in front
of body center of gravity. In this case, the braking force slows down
the runner and exerts force on legs, hips and back. Consequently,
over-striding is a dangerous movement which needs realtime detec-
tion. The algorithm should quickly process the impact force while
requires little training. To determine over-striding, we decide to ex-
tract specific features from the waveforms. The features we choose
are the peak magnitude and the peak width along the X-axis (par-
allel with runner running direction) of the runner’s legs. We find
distinct peaks when the runner’s foot strikes the ground. The peaks
are associated with the change of the runner’s foot direction; there-
fore braking motions create a evident acceleration change, which
is shown as steep peaks. As seen in Figure 2, the peaks of the
over-striding waveforms are sharper and occur in shorter time. Af-
ter taking the peak magnitude and dividing the magnitude by the
peak width, we obtain a metric to determine whether a runner is
over-striding. We then set the threshold based on the metric values
from five different runners performing over-striding and not over-



striding. We used this metric threshold to detect over-striding.

Figure 3: Left: Not over-pronating Z-Axis waveform. Right:
Over-pronating Z-Axis waveform.

Over-pronation occurs when the ankle rolls inward during impact.
The nature of runner’s foot often causes it, and people usually
correct it through orthopedic shoes or inserts. When a runner is
over-pronating, he/she will often experience pain in the foot, an-
kle, knees and back. Therefore, it is also very important to fix this
behavior, same as the motivation of over-striding correction. One
characteristic related to over-pronation is that the runner exhibits
lots of lateral movement in the legs from side to side. This lat-
eral movement can be detected in the Z-Axis of the accelerometers
located on the runner’s legs. As seen in Figure 3, the runner with-
out over-pronating produces little deviation in the waveform. On
the contrary, the over-pronating runner produces more obvious de-
viation in the waveform. By taking the standard deviation of the
frame, we are able to get a metric to indicate the extent of over-
pronating. Although the algorithm is relatively simple, it detects
over-pronation consistently without calibration or gravity compen-
sation. Due to these factors, we use this simplistic yet effective
algorithm to detect over-pronating.

4.3 Correlation and Mutual Information
In our system, we detect improper running behavior such as over-
striding and over-pronation by recognize all types of wrong corre-
lation which deviate from an ideal golden pattern over a threshold.
Thus, the system needs the following components: 1) A golden
data set, serving as reference, which contains correlation informa-
tion from correct motions. 2) Real-time running data which is col-
lected directly from uLeaps. 3) Algorithms that can precisely ex-
tract all the existing correlations from both golden data and real-
time data. 4) Comparison modules that compare real-time corre-
lations with reference (golden) correlations. 5) An optimized con-
figuration of the threshold that can be used to judge the degree of
improperness.

Figure 4: Correlation and mutual information system diagram.

The Correlation and Mutual Information system diagram is shown
in Figure 4. Correlation and mutual information [11] are both nec-
essary to determine behavior. The inputs are golden data, golden
matrix and real-time data. For each 250 samples of real-time data,
we append them to the golden data, calculate the MI matrix and
compare it with the golden matrix and finally generate the output
matrix. Thus, the time resolution of our system is about 4 seconds,
which means the system can detect wrong correlations for every 4
seconds in running.

4.3.1 Correlations In Running
We should first take a look at the real correlation in running to check
linearity. To check the correlation of two random variables, we
plot two measured data in 2-D plane, as seen in Figure 5. Clearly,
the correlation in running is non-linear and sometimes difficult to
map to any well-known functions. Therefore, we should choose an
algorithm which can detect a general and non-linear dependency.
Mutual information can be a very powerful tool in this case.

Figure 5: Left: Correlation of left arm vs right arm. Right:
Correlation of right arm vs right leg.

4.3.2 Mutual Information
The mutual information of two random variables is a measure-
ment of the mutual dependence of two variables [7]. The most
common measurement unit is "bit", using base 2 logarithms. Mu-
tual information can be expressed as I(X;Y) = H(X,Y) - H(X|Y) -
H(Y|X), where H(X|Y) and H(Y|X) are the conditional entropies,
and H(X,Y) is the joint entropy of X and Y. Since H(X)>H(X|Y),
the expression is consistent with the non-negativity property stated
above.

4.3.3 Data Structure
The input data structure is shown in the Figure 6. Each uLeap sen-
sor has 6 channels of data. The first 3 channels represent the accel-
eration in X, Y, Z axis, respectively. The last 3 channels represent
angle rate in X, Y, Z axis. In total, we have 30 channels of data
from 5 laps, in the order of left arm, right arm, waist, left leg and
right leg.

Figure 6: Input data structure for arms, legs and waist.

Each channel of data can be regarded as the measured data of ran-
dom variables. Thus, each pair of two channels has different corre-



lations to be examined. To calculate the correlation in matrix for-
mat, we use a 30x30 correlation matrix which includes 435 cross
correlations symmetrically and 30 self-correlations in the diagonal
line (30*30 = 435*2 + 30). The correlation matrix I(x,y) is shown
in Fig 7. Each element inside is the mutual information of two
channels of symmetric data, I(x,y) = I(y,x). The numbers in the
diagonal are self-correlated, I(x,x) = 1.

Figure 7: Illustration of correlation matrix.

4.3.4 Filter Selection
As the running frequency of human is about 1-3 Hz, we decide to
use a linear-phase FIR low pass filter. The configurations of the FIR
filter are: Fpass = 3Hz; Fstop = 5Hz; Apass = 0.1dB; Astop = 90dB.

Figure 8: Magnitude and frequency response of FIR filter.

The magnitude and frequency response of the FIR filter is shown
in Figure 8. Figure 9 shows the correlation pattern of raw data and
filtered data. The high frequency noise degrades the quality of the
data and the filter improves the data quality by removing the noise.

4.3.5 Data Quantization
In digital systems, it is a simple way to quantize the data to 2d

by selecting the word length. Originally the data is quantized to
1 (d = 0) and has an entropy of 12-15. The higher the d is, the
smaller the entropy of the data can be. In order to minimize the
entropy of data, we should choose quantization number as high as
possible. However, another effect of quantization is to introduce
quantization noise. Thus, the quantization number is limited by the
acceptable maximum quantization noise. Table 1 summarizes the
detailed quantization effects. By choosing d = 7, we reduce the

Figure 9: Correlation plot of raw data (Left) and filtered data
(Right).

entropy of the data from 12 to 5.74, reduce possible values from
4096 to 53 and also reduce the computational complexity. In this
configuration, the quantized data can still perfectly represent the
clear butterfly shape.

Table 1: Summary of quantization effect.

4.4 Feedback
4.4.1 Graphical Feedback

Figure 10: Graphical user interface which displays accelera-
tion waveforms with synchronized video.

Figure 10 presents acceleration plots for the left arm, right arm,
left leg, right leg, and waist. The user clicks radio buttons to se-
lect which axes to display for each plot. Additionally, the user can
watch the video which is synchronized with the waveforms. It helps
the user to see which motions are improper. The plots toward the
top of GUI are the braking and over-pronation metrics as described
previously in the signal processing section. The top right portion of
GUI displays messages which tell the user if he/she is over-striding
or over-pronating. The correlative feedback GUI is similar, but con-
tains the golden mutual information matrix, difference matrix, and
text describes which correlations deviate from the golden pattern.



4.4.2 Real-Time Sensational Feedback
The sensational feedback can inform the user of improper running
behavior in realtime. Whenever the runner shows an improper mo-
tion, a signal is sent to the Microleap2 device to trigger vibrator
motor, on the body part where incorrect movement exhibits. The
high level design of the system is shown in Figure 11.

Figure 11: System diagram for the Sensational Feedback.

5. EVALUATION
5.1 Experiment Setup
The feedback system is tested against datasets including normal
running, over-striding, and over-pronating. Initially, runners run
for two minutes performing each of the three activities. The first
test is to run detection algorithms on each set. Afterwards, we test
one dataset include all three motions. A successful system should
differentiate all of the motions in the same data set and trigger the
vibration during the over-striding and over-promoting motions.

Before using the mutual information algorithm, we need to assess
the reliability of the outputs. We first recognize whether there is
an improper behavior in the running pattern, and then identify the
type of behavior. One of the outputs from this correlation algo-
rithm is a global 30x30 matrix which depicts all possible corre-
lation combinations. We receive 30 different channels of output
from five uLeaps on arms, legs and waist, as each uLeap sensor
has six sensor data channels. A 30x30 golden matrix is taken from
an ideal subset of proper running data and serves as the baseline.
Then, we created other 30x30 mutual information matrices derived
from running with known improper behaviors, and then subtracted
these mutual information matrices from the golden matrix. We set
a threshold which is manually found in experiment, and translate
the differences between the two matrices into a set of threshold
matrices. In these threshold matrices, black (0) element indicates
no threshold violation and white (1) indicates a threshold violation
(i.e. correlation error). The threshold matrix allows a clearer visual
interpretation of the matrix.

We test two types of behaviors, over-striding and over-pronation.
After the tests we have two different sets of threshold matrices for
each improper behavior, and one set of threshold matrices corre-
sponding to proper running. The threshold matrices would act as
general error detection in the running pattern. Furthermore, we
add up all the threshold matrices to obtain threshold sum matrices
for each type of improper running behavior. These threshold sum
matrices are then compared against an unknown 30x30 threshold
matrix exhibiting either over-striding and over-pronation. Using
the threshold matrices, this method can detect the type of improper
behavior.

As mentioned before, the 30x30 matrix is used as a global view of
the running data. For a more localized perspective, we produce a

second correlation output, the scatterplot. This is basically the in-
dividual plots of each element in the 30x30 matrix. For example,
regarding the left leg Z-axis and the right leg Z-axis data, the output
is a 2D plot, in which the X-axis is the left leg’s Z-axis accelerom-
eter data and the Y-axis is the right leg’s Z-axis accelerometer data.
Using a scatterplot, shapes can be extracted from the plots which
match particular running motions. This type of detection is more
complicated to implement automatically, but it is more reliable than
the first method. Furthermore, the scatterplots can be better inter-
pret physically than the 30x30 matrix, and user can read that visu-
alized output more easily. Thus, it is a more fine-grained method
of finding correlations of motion between body parts of different
running patterns.

5.2 Evaluation Results
First, we test if the threshold matrix is effective in detecting erro-
neous running patterns. In following examples, we apply a uniform
threshold, 0.03, to the 30x30 difference matrix (subtracting golden
matrix by correlation matrix) in Figure 12.

Figure 12: Left: Over-pronate threshold. Right: Over-stride
threshold.

The threshold matrix successfully detects erroneous running pat-
terns. The golden matrix is optimized to a particular person’s run-
ning pattern. However, the golden matrix among users can be dif-
ferent, and we may get drastically different results by using differ-
ent persons’ golden matrices. One example is shown in Figure 13.
In this section, we will put less attention on adapting golden data
across different persons. In Figure 13, the maximum difference is
0.15, much greater than the 0.03 threshold. We will discuss the
discrepancy in next section.

Figure 13: Golden Matrix subtracted by proper running ma-
trix of one subject.

In the second test, we examine if the threshold sum matrix makes
a successful distinguish between one wrong running behavior and
another. We create two different threshold sum matrices for over-
striding and over-pronation. These threshold sum matrices, like



probabilistic maps, indicate the most probable location of thresh-
old violation. We take a threshold matrix of one possible improper
running behaviors. Then we normalize it to each threshold ma-
trix and calculate the differences between it and each matrix. The
overall magnitude of the difference matrix gives the likelihood to
match that behavior. In Figure 14, the example displays threshold
difference matrices in black-and-white for clearer interpretation.

Figure 14: Difference between threshold matrices. Top-left:
over-stride threshold sum - over-stride threshold data; Top-
right: over-stride threshold sum - over-pronate threshold data;
Bottom-left: over-pronate threshold sum - over-stride thresh-
old data; Bottom-right: over-pronate threshold sum - over-
stride threshold data.

The difference between threshold matrices and threshold sum prob-
abilities can distinguish one improper behavior from another, as
shown in Figure 14. In the left column, the over-stride and the over-
pronation threshold sum probability are respectively compared against
an over-stride threshold matrix. The magnitude of the discrepancy
clearly indicates that the test data set represents over-striding be-
havior. Similarly, the right column shows the over-stride and over-
pronation threshold sum probability matrices compared against an
over-pronation threshold matrix. Again, the discrepancy magnitude
correctly shows that the behavior is over-pronation.

In the last test, we examine scatterplots of the individual elements,
as shown in Figure 15. We try to find how effective they are in dis-
tinguishing running behavior. These data exhibit distinct patterns
based on the type of running behavior present in the data set. The
blue points represent the golden data, a proper running form. Over-
stride data is shown in red, and over-pronation data is represented
in green. When the mutual information value in the 30x30 matrix
is reasonably high, these scatterplots produce patterns exist in the
golden data. In this case, matching the curve and shape of the scat-
terplot is helpful in improper behavior detection and behavior type
identification.

6. DISCUSSION
6.1 GUI and Sensational Feedback
Overall, we and our participants are quite pleased with GUI and
real-time feedback mechanisms. Our system makes correct detec-
tion when the users try to exhibit over-pronation and over-striding
motions in purpose. For some runners, the feedback mechanism is

Figure 15: Golden Matrix of Participant E Subtracted by
Proper Running Matrix of Participant R.

not triggered in some cases. However, when we watch the video
and analyze, we find the discrepancy happens when the individuals
involuntarily recover their normal running motion rather than keep-
ing doing the improper running motions in whole experiment. One
interesting note is that we may also detect improper motions within
the participants who try to run normally. For example, during par-
ticipant A’s normal running, he triggers the over-striding mecha-
nism on his right foot. From his video, we find he does land harder
on his right foot than left foot time after time. In this case, he ac-
tually exhibits a braking force and consequently exerts strong force
on his leg. Additionally, when participant S runs, he triggers the
over-pronation feedback. After analyzing the video, it does appear
that he is over-pronating. participant S also has flat feet, which
makes him more naturally inclined to over-pronate. In the future,
we would like to consult with an expert runner to determine the
effectiveness of our feedback mechanisms.

One additional comment on the over-striding mechanism is that it
does not directly determine if the user is over-striding. Instead,
it computes the braking motion, a side effect from over-striding.
Regardless of whether the user is over-striding, creating a braking
force is harmful to the runner’s body. This classification of over-
striding can be extended to over-braking in the future.

6.2 Mutual Information
The mutual information algorithm works well in detecting and iden-
tifying problematic running behaviors. The ideal golden data is sig-
nificant in the algorithm, since it works as a baseline. Because the
data is not taken from professional runners, the golden data is not
exactly the ideal running pattern. The concept of ideal running is
not trivial, since different body types and different running styles
can all have their own distinct proper running behaviors. The diffi-
culty to establish an ideal running pattern contributes to the errors
in our design. The feasibility of using our design depends on the
ability of our input golden data to generalize to different running
behaviors.

If the golden data fits proper running sufficiently, then improper be-
havior detection, in this case over-striding and over-pronation, can
be detected easily. Using fitted lines or shapes (Hough transform)



on the scatterplot is the best method of individual error detection,
because deviation from the ideal running data’s shape will immedi-
ately trigger an error. The shape of the deviation can then be ana-
lyzed with the golden data to detect the type of improper behavior,
since each behavior has a distinct shape attributed to the correlated
movement between each body part.

The threshold matrix also works well in behavior detection. Thresh-
old sum matrices are helpful in distinguishing improper running
behavior, but may not ensure one hundred percent accuracy. Based
on closer analysis of the threshold matrix, several elements already
have relatively low mutual information values in the golden data.
A low mutual information value indicates that the data cannot con-
fidently exhibit a particular pattern. When these seemingly random
patterns in the golden data are matched with non-ideal data, the
differences between the two mutual information values can vary
more than the difference between an element of a distinct pattern
and high correlation value. Therefore, the actual threshold value
should be mutable with the mutual information value of the golden
data. A higher value with a distinct pattern should be subjugated
to a lower, tighter difference threshold, and a lower mutual infor-
mation value with a random pattern should have a larger, looser
difference threshold. Having a mutable threshold value will no-
ticeably increase the accuracy and enhance the matching with the
corresponding localized scatterplot. Fortunately, even with a uni-
form threshold, our algorithm still works great in detecting errors
and identifying the improper running behaviors.

7. CONCLUSION
In this research, we develop a system which can detect improper
running patterns using wearable sensors, and send graphical and
vibration feedback to users. During our experiment, our system
successfully detects over-striding and over-pronation motions when
participants deliberately do so. Our system also correctly detect
wrong motion when the participants try to run normally but invol-
untarily present improper motion. Afterwards, we confirm our de-
tection based on video analysis. Moreover, we find the threshold
matrix and scatterplot work well to identify improper running be-
haviors. After extended experiments with more subjects, we hope
to deploy our system in school gyms and fitness club. Thus, a grow-
ing number of people can be noticed when they run with improper
behaviors. Our system can help them correct running pose as soon
as possible and avoid health issues due to these improper motion.
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