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Abstract

This paper addresses the real-time encoding-decoding

problem for high-frame-rate video compressive sensing (CS).

Unlike prior works that perform reconstruction using it-

erative optimization-based approaches, we propose a non-

iterative model, named “CSVideoNet”, which directly learns

the inverse mapping of CS and reconstructs the original in-

put in a single forward propagation. To overcome the limita-

tions of existing CS cameras, we propose a multi-rate CNN

and a synthesizing RNN to improve the trade-off between

compression ratio (CR) and spatial-temporal resolution of

the reconstructed videos. The experiment results demonstrate

that CSVideoNet significantly outperforms state-of-the-art

approaches. Without any pre/post-processing, we achieve a

25dB Peak signal-to-noise ratio (PSNR) recovery quality at

100x CR, with a frame rate of 125 fps on a Titan X GPU.

Due to the feedforward and high-data-concurrency natures

of CSVideoNet, it can take advantage of GPU acceleration

to achieve three orders of magnitude speed-up over conven-

tional iterative-based approaches. We share the source code

at https://github.com/PSCLab-ASU/CSVideoNet.

1. Introduction

High-frame-rate cameras are capable of capturing

videos at frame rates over 100 frames per second (fps).

These devices were originally developed for research pur-

poses, e.g., to characterize events that occur at a rate that

traditional cameras are incapable of recording in physi-

cal and biological science. Some high-frame-rate cameras,

such as Photron SA1, SA3, are capable of recording high

resolution still images of ephemeral events such as a su-

personic flying bullet or an exploding balloon with negli-

gible motion blur and image distortion artifacts. However,

due to the complex sensor hardware designed for high sam-

pling frequency, these types of equipment are extremely

expensive (over tens of thousand dollars for one camera).

The high cost limits the field of their applications. Further-

more, the high transmission bandwidth and the large stor-

age space associated with the high frame rate challenges

themanufacture of affordable consumer devices. For exam-

ple, true high-definition-resolution (1080p) video cameras

at a frame rate of 10k fps can generate about 500 GB data

per second, which imposes significant challenges on exist-

ing transmission and storage techniques. Also, the high

throughput raises energy efficiency a big concern. For ex-

ample, “GoPro 5” can capture videos at 120 fps with 1080p

resolution. However, the short battery life (1-2 hours) has

significantly narrowed their practical applications.

Traditional video encoder, e.g., H.264/MPEG-4, is com-

posed of motion estimation, frequency transform, quanti-

zation, and entropy coding modules. From both speed and

cost perspectives, the complicated structure makes these

video encoder unsuitable for high-frame-rate video cam-

eras. Alternatively, compressive sensing (CS) is a much

more hardware-friendly acquisition technique that allows

video capture with a sub-Nyquist sampling rate. The ad-

vent of CS has led to the emergence of new image devices,

e.g., single-pixel cameras [6]. CS has also been applied

in many practical applications, e.g., accelerating magnetic

resonance imaging (MRI) [13]. While traditional signal

acquisition methods follow a sample-then-compress pro-

cedure, CS could perform compression along with sam-

pling. The novel acquisition strategy has enabled low-

cost on-sensor data compression, relieving the pain for

high transmission bandwidth and large storage space. In

the recent decade, many algorithms have been proposed

[3, 16, 1, 4, 22, 2, 12] to solve the CS reconstruction problem.

Generally, these reconstruction algorithms are based on ei-

ther optimization or greedy approaches using signal spar-

sity as prior knowledge. As a result, they all suffer from

high computational complexity, which requires seconds to

minutes to recover an image depending on the resolution.

Therefore, these sparsity-based methods cannot satisfy the

real-time decoding need of high-frame-rate cameras, and

they are not appropriate for the high-frame-rate video CS
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Figure 1: Illustration of domain transformations in CS.This

work bridges the gap between compressed and signal do-

mains.

application.

The slow reconstruction speed of conventional CS ap-

proaches motivates us to directly model the inverse map-

ping from the compressed domain to original domain,

which is shown in Figure 1. Usually, this mapping is ex-

tremely complicated and difficult to model. However, the

existence of massive unlabeled video data gives a chance

to learn such a mapping using data-driven methods. In

this paper, we design an enhanced Recurrent convolutional

neural network (RCNN) to solve this problem. RCNN has

shown astonishingly good performance for video recogni-

tion and description [5, 23, 25, 21]. However, conventional

RCNNs are not well suited for video CS application, since

they are mostly designed to extract discriminant features

for classification related tasks. Simultaneously improv-

ing compression ratio (CR) and preserving visual details

for high-fidelity reconstruction is a more challenging task.

To solve this problem, we develop a special RCNN, called

“CSVideoNet”, to extract spatial-temporal features, includ-

ing background, object details, and motions, to signifi-

cantly improve the compression ratio and recovery quality

trade-off for video CS application over existing approaches.

The contributions of this paper are summarized as fol-

lows:

• We propose an end-to-end and data-driven frame-
work for video CS. The proposed network di-

rectly learns the inverse mapping from the com-

pressed videos to the original input without additional

pre/post-processing. To the best of our knowledge,

there has been no published work that addresses this

problem using similar methods.

• We propose a multi-level compression strategy to im-
prove CR with the preservation of high-quality spa-

tial resolution. Besides, we perform implicit motion

estimation to improve temporal resolution. By com-

bining both spatial and temporal features, we further

improve the compression ratio and recovery qual-

ity trade-off without increasing much computational

complexity.

• We demonstrate CSVideoNet outperforms the refer-
ence approaches not only in recovery quality but also

in reconstruction speed because of its non-iterative

nature. It enables real-time high-fidelity reconstruc-

tion for high-frame-rate videos at high CRs. We

achieve state-of-the-art performance on the large-

scale video dataset UCF-101. Specifically, CSVideoNet

reconstructs videos at 125 fps on a Titan X GPU and

achieves 25dB PSNR at a 100x CR.

2. Related work

There have been many recovery algorithms proposed

for CS reconstruction, which can be categorized as follows:

Conventional Model-based CS Recovery: In [18],

the authors model the evolution of scenes as a linear dy-

namical system (LDS). This model comprises two sub-

models: the first is an observation model that models

frames of video lying on a low-dimensional subspace; the

second predicts the smoothly varied trajectory. The model

performs well in stationary scenes, however, inadequate

for non-stationary scenes.

In [27], the authors use Gaussian mixture model (GMM)

to recover high-frame-rate videos, and the reconstruction

can be efficiently computed as an analytical solution. The

hallmark of the algorithm is that it adapts temporal com-

pression rate based upon the complexity of the scene. The

parameters in GMM are trained off-line and tuned during

the recovery process.

In [19], the authors propose a multi-scale video recov-

ery framework. It first obtains a low-resolution video pre-

view with very low computational complexity, and then

it exploits motion estimates to recover the full-resolution

video by solving an optimization problem. In a similar

work [8], the authors propose a motion-compensated and

block-based CS reconstruction algorithmwith smooth pro-

jected Landweber (MC-BCS-SPL). The motion vector is es-

timated from a reference and a reconstructed frame. The

reconstructed video is derived from the combination of the

low-resolution video and the estimated motion vector. The

drawback of the two work is the requirement of specify-

ing the resolution at which the preview frame is recov-

ered, which requires prior knowledge of the object speed.

Also, the recovery performance is highly dependent on the

quality of motion estimation. To accurately estimate mo-

tion vector is a challenging task especially in high-frame-

rate scenarios. The high computational cost further makes

this model inadequate for reconstructing high-frame-rate

videos.

Deep Neural Network (DNN) Based CS Recovery:

In [15], the authors propose a stacked autoencoder to learn

a representation of the training data and to recover test

data from their sub-sampled measurements. Compared to

the conventional iterative approaches, which usually need

hundreds of iterations to converge, the feed-forward deep

neural network runs much faster in the inference stage.
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In [11], the authors propose a convolutional neural net-

work, which takes CS measurements of an image as input

and outputs an intermediate reconstruction. The interme-

diate output is fed into an off-the-shelf denoiser to obtain

the final reconstructed image. The author shows the net-

work is highly robust to sensor noise and can recover vi-

sually higher quality images than competitive algorithms

at low CRs of 10 and 25. Both [15] and [11] are designed

for image reconstruction, which only focus on spatial fea-

ture extraction. For video applications, temporal features

between adjacent frames are also important. Therefore, the

overlook of temporal correlation makes the image recon-

struction algorithms inadequate for video applications.

In [9], the authors propose a Video CS reconstruction

algorithm based on a fully-connected neural network. This

work focuses on temporal CS where multiplexing occurs

across the time dimension. A 3D volume is reconstructed

from 2D measurements by a feed-forward process. The

author claims the reconstruction time for each frame can

be reduced to about one second. The major drawback of

this work is that the algorithm is based on a plain fully-

connected neural network, which is not efficient in extract-

ing temporal features.

3. Methodology

3.1. Overview of the proposed framework for video
CS

Two kinds of CS cameras are being used today. Spa-

tial multiplexing cameras (SMC) take significantly fewer

measurements than the number of pixels in the scene to

be recovered. SMC has low spatial resolution and seeks to

spatially super-resolve videos. In contrast, temporal multi-

plexing cameras (TMC) have a high spatial resolution but

low frame-rate sensors. Due to the missing of inter frames,

extra computation is needed for motion estimation. For

these two sensing systems, either spatial or temporal res-

olution is sacrificed for achieving a better spatial-temporal

trade-off. To solve this problem, we propose a new sensing

and reconstruction framework, which combines the advan-

tage of the two systems. The random video measurements

are collected by SMC with very high temporal resolution.

To compensate for the low spatial resolution problem in

SMC, we propose a multi-CR strategy. The first key frame

in a group of pictures (GOP) is compressed with a low CR,

and the remaining non-key frames are compressed with a

high CR. The spatial features in the key frame are reused

for the recovery of the entire GOP due to the high inter-

frame correlation in high-frame-rate videos. The spatial

resolution is hence improved. The RNN extrapolates mo-

tion from high-resolution frames and uses it to improve the

temporal resolution. Therefore, a better compression ratio

and spatial-temporal resolution trade-off are obtained by

the proposed framework.

The overall architecture of the proposed video CS re-

construction framework is shown in Figure 2. The net-

work contains three modules: 1) an encoder (sensing ma-

trix) for simultaneous sampling and compression; 2) a ded-

icated CNN for spatial features extraction after each com-

pressed frame; 3) an LSTM formotion estimation and video

reconstruction. As mentioned earlier, to improve the spa-

tial resolution, the random encoder encodes the key frame

in a GOPwith more measurements and the remaining with

less. Also, a recent research [26] shows that sensing ma-

trix can be trained with raw data to better preserve the

Restricted Isometry Property (RIP). Therefore, the encoder

can also be integrated into the entire model and trained

with the whole network to improve reconstruction per-

formance. Besides, as the proposed algorithm eliminates

the sparsity prior constraint, the direct optimization of RIP

preservation in [26] is not necessary. Instead, we can use

the reconstruction loss to train the sensing matrix along

with the model. For simplicity, we still use a random

Bernoulli matrix for information encoding in the experi-

ment. Different from the prior work that extracts motion

from low-resolution previews, the proposed LSTM net-

work infers motion from high-resolution frames generated

by multi-rate CNNs. The resolution of the reconstructed

video is further improved with the incorporation of high-

quality motion estimation.

3.1.1 Multi-rateCNNEncoder for compression ratio

enhancement

Typical CNN architectures used for recognition, classifica-

tion, and segmentation that map input to rich hierarchi-

cal visual features is not applicable to the reconstruction

problem. The goal of the CNN is not only to extract spa-

tial visual features but also to preserve details as much as

possible. Therefore, we eliminated the pooling layer which

causes information loss. Also, we discard the convolution-

deconvolution architecture (widely used in segmentation

tasks [17]), which first encodes salient visual features into

low-dimension space and then interpolates the missing in-

formation to generate a high-resolution image. Instead, we

design a special CNN suitable for CS reconstruction, which

has the best recovery performance among all the tested

structures mentioned above. The overall network structure

is shown in Figure 3. All feature maps have the same di-

mension as the reconstructed video frames, and the num-

ber of feature maps decreases monotonically. This process

resembles the sparse coding stage in CS, where a subset of

dictionary atoms is combined to form the estimation of the

original input. There is a fully-connected (FC) layer, de-

noted in gray color in Figure 3, which converts vectorized

m-dimensional video data to 2D features maps. To reduce

1682



1~T

Synthesizing LSTM

32

32

32

32 32

32

ReLU ReLU

3
3

3
3 3

3

Random Encoder
CR=N (N>>M)

32

32

64 32

32 32

ReLU ReLU

Non-key CNN

3
3

3
3 3

3

Random Encoder
CR=N (N>>M)

...

T

2

32

32 32

32

32 32 32 32

32 32 32 32

32

32

32

32

Re
LU

Re
LU

Re
LU

Re
LU

Re
LU

Re
LU

Re
LU

3
3 3

3
3
3

3
3 3

3 3

3
3

3
3

3

Key CNN

... ......
Non-key 
Frame T

Non-key 
Frame K+1

.
.

.

6*32*32 6*32*3216*32*32 1*32*32

6*32*32 6*32*3216*32*32 1*32*32

6*32*32 6*32*3216*32*32 1*32*32

Key Frame 1

Random Encoder
CR=M

...

1

32 32

Figure 2: Overall architecture of the proposed framework. The compressed video frames are acquired by compressive

sensing. In a length T GOP, the first one frame and the remaining (T-1) frames are compressed with a low and high CR,

respectively. The reconstruction is performed by the CSVideoNet that is composed of a key CNN, multiple non-key CNNs,

and a synthesizing LSTM.

the latency of the system and to simplify the network ar-

chitecture, we use video blocks as input and set the block

size n to 32×32. All convolutional layers are followed by
a ReLU layer except the final layer. We pre-train an eight-

layer key CNN to process the key frame that is compressed

with a low CR. For other non-key frames compressed with

a high CR, we use 3-layer non-key CNNs to handle them

since they carry information of low entropy. All weights of

the non-key CNNs are shared to reduce the requirement of

storage. Hence the proposed framework can be easily gen-

eralized to other high-frame-rate video applications that

require a larger number of non-key frames. It should be

noted that the pre-training of the keyCNN is critical for im-

proving the reconstruction performance. In the case where

thewhole network is trained from scratchwithout any pre-

training, the convergence performance is bad. The reason

is partly due to the vanishing gradients, since we have a

long path from the CNNs to the LSTM. The pre-training

greatly alleviate this problem.

3.1.2 Motion-estimation synthesizing LSTM De-

coder for spatial-temporal resolution en-

hancement

The proposed framework is end-to-end trainable, compu-

tationally efficient, and requires no pre/post-processing.

This is achieved by performing motion estimation implic-

itly, which is different from prior works [19, 27, 8]. We uti-

lize an LSTM network to extract motion features that are

critical for improving temporal resolution from the CNN

output. Since the information flows from the first LSTM

node to the remaining, the LSTM will implicitly infers rep-

resentations for the hidden motion from the key frame to

the non-key frames. Therefore, the recovery quality of the

GOP is improved by the aggregation of motion and spa-

tial visual features. That is why we call this network the

motion-estimation synthesizing LSTM. For simplicity, each

input LSTMnode in the experiment accepts input datawith

equal length. In fact, since the non-key frames carry less

information than the key frame, the LSTM network can

be designed to accept inputs with variable lengths. Hence,

we can further reduce the model size and get a faster re-

construction speed. From the experiment results, we find

the utilization of the LSTM network is critical to improv-

ing recovery fidelity. As a result, our model outperforms

the competitive algorithms by a significant margin.

The update of the LSTM units is as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) ,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,

ht = ot tanh(ct),

where xt is the visual feature output of the CNN encoder.

The detailed information flow and the output dimension

at each LSTM node is shown in Figure 2. The number on

the LSTM nodes denotes the dimension of the output fea-

tures. Specifically, the output feature map of each CNN

has a dimension of 16x32x32. All these feature maps are

directly fed into the input nodes of the LSTM. The LSTM

has two hidden layers, the dimension of the output of each

hidden layer is 6x32x32. The dimension of the final output

is 1x32x32.

3.2. Learning algorithm

Given the ground-truth video frames x{1,··· ,T} and the
corresponding compressed frames y{1,··· ,T}, we use mean
square error (MSE) as the loss function, which is defined

as:

L(W,b) =
1

2N

T∑

i

‖f(yi;W,b)− xi‖22, (1)

whereW, b are network weights and biases, respectively.
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Using MSE as the loss function favors high PSNR. PSNR

is a commonly used metric to quantitatively evaluate re-

covery quality. From the experiment results, we illustrate

that PSNR is partially correlated to the perceptual quality.

To derive a better perceptual similarity metric will be a fu-

ture work. The proposed framework can be easily adapted

to a new loss function.

Three training algorithms, i.e., SGD, Adagrad [7] and

Adam [10] are compared in the experiment. Although con-

suming most GPU memory, Adam converges towards the

best reconstruction results. Therefore, Adam is chosen to

optimize the proposed network.

4. Experiment

As there is no standard dataset designed for video CS,

we use UCF-101 dataset introduced in [20] to benchmark

the proposed framework. This dataset consists of 13k

clips and 27 hours of video recording data collected from

YouTube, which belong to 101 action classes. Videos in

the dataset are randomly split into 80% for training, 10%
for validation and the remaining for testing. Videos in the

dataset have a resolution of 320×240 and are sampled at
25 fps. We retain only the luminance component of the

extracted frames and crop the central 160×160 patch from
each frame. These patches are then segmented into 32×32
non-overlapping image blocks. We get 499,760 GOPs for

training and testing in total.

We set three test cases with CRs of 25, 50 and 100, re-

spectively. Since the CR for key and non-key frames are

different in the proposed method, we derive and define the

CR for a particular GOP as follows. Let m1,m2 denotes
the dimension of compressed key and non-key frame, re-

spectively. Let n denotes the dimension of raw frames. T
is the sequential length of a GOP.

CR1 =n/m1, CR2 = n/m2,

CR =
CR1 × 1 + CR2 × (T − 1)

T
. (2)

In the experiment, the CR of each key frame is m1=5,

and the CR of non-key frames in each test case is m2=27,

55, and 110, respectively. Therefore, the averaged CR for

each test case is about 25, 50, and 100, respectively.

The dimension of data for pre-training the key CNN is

(N × C × H ×W ), where N=100 is the batch size, C=1
is the channel size, and W,H=(32, 32) is the height and
width of each image block, respectively. The dimension of

the data used for training the entire model is (N ′×T×C×
H ×W ), where T=10 is the sequence length for one GOP,
and N ′=20 is the batch size. The other dimensions are the
same. We shrink the batch size here because of the GPU

memory limitation. In every ten consecutive video frames,

we define the first one as the key frame, and the remaining

as non-key frames.

Table 1: Summary of major differences between the pro-

posed approach and all baselines.

Image CS

Iterative Based
Denoising-based

approximate message passing
D-AMP [14]

Non-iterative Based
Stacked denoising autoencoder SDA [15]

Convolutional neural network ReconNet [11]

Video CS

Iterative Based

Motion-compensated block-

based CS with smooth

projected Landweber
MC-BCS-SPL [8]

Gaussian mixture model GMM [27]

Non-iterative Based
Fully-connected neural network VCSNet [9]

Proposed approach CSVideoNet

4.1. Comparison with the state-of-the-art

We compare our algorithm with six reference work for

CS reconstruction: [27, 8, 15, 14, 11, 9]. We summarize all

baseline approaches and our approach in Table 1. For a

fair comparison, we also re-train reference algorithms us-

ing UCF-101 dataset. Three metrics: Peak signal-to-noise

ratio (PSNR), structural similarity (SSIM) [24], and pixel-

wise mean absolute error (MAE) are applied for perfor-

mance evaluation. Note that MAE is the averaged abso-

lute error of each pixel value within the range of [0,255],

which gives a straightforward measure of the pixel-wise

distortion. The authors of VCSNet only offer a pre-trained

model with CR of 16, without providing sufficient training

details to reproduce the experiment at present. Therefore,

we train the proposed model and compare it with CVSNet

at a single CR of 16.

4.1.1 Comparison with image CS approaches

We first compare with the algorithms used for image CS

reconstruction. D-AMP is a representative of the conven-

tional iterative algorithms developed for CS, e.g., match-

ing pursuit, orthogonal mating pursuit, iterative hard-

thresholding. It offers state-of-the-art recovery perfor-

mance and operates tens of times faster compared to

other iterative methods [14]. Both SDA and ReconNet

are DNN-based reconstruction approaches for images pro-

posed recently. Specifically, ReconNet is based on CNN

and achieves state-of-the-art performance among all im-

age CS reconstruction algorithms [11]. In the experiment,

we tested both frame-based and block-based D-AMP that

reconstructs an entire frame and an image block at a time,

respectively. For other approaches, we test them in a block-

based pattern to reduce the difficulty for training the mod-

els. The quantized results of average PSNR, SSIM, andMAE

for each method under different CRs are shown in Table 2.

It is shown that CSVideoNet outperforms the reference ap-

proaches on all three metrics by a meaningful margin, es-

pecially at the CR of 100. TheMAE of CSVideoNet is 4.59 at

a 100x CR which means the averaged pixel-wise distortion

is only 4.59/255 = 1.2% compared to the ground-truth
video. The PSNR drop from the CR of 25 to 100 is also cal-
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Figure 3: Pre-training of the key CNN.

Table 2: Performance comparison with image CS recon-

struction approaches.

CR D-AMP(F) D-AMP(B) SDA ReconNet CSVideoNet

PSNR

25 25.34 15.1494 23.39 24.27 26.87

50 12.49 9.1719 21.96 22.47 25.09

100 7.17 8.0942 20.40 20.44 24.23

SSIM

25 0.76 0.0934 0.69 0.73 0.81

50 0.08 0.0249 0.65 0.67 0.77

100 0.03 0.0067 0.61 0.61 0.74

MAE

25 4.65 24.92 5.76 5.02 3.38

50 64.30 81.67 6.60 5.67 4.31

100 92.12 86.04 8.50 7.42 4.59

PSNR↓ 25→ 100 72% 13% 47% 16% 10%

culated in Table 2. We found the proposed approach suffers

from the least performance degradation. This is partly due

to the feature sharing between the key and non-key frames

when the compressed input carries limited information.

For visual quality assessment purpose, we list the re-

constructed frame by each approach in Figure 4. The re-

constructed frame is the middle (fifth) frame in a GOP. We

find all the reconstructed non-key frames have homoge-

neous recovery quality, and the key frame has slightly bet-

ter reconstruction quality than the non-key frames. As the

proportion of key and non-key frames is 1:9, and the re-

construction quality of the video is dominated by that of

the non-key frames. Therefore, the middle frame (a non-

key frame) shown in Figure 4 well represents the average

reconstruction quality.

For all the numerical results, we calculate all the qual-

ity metrics, including PSNR, SSIM, and MAE, by aver-

aging the results over all frames in a GOP. We can see

that CSVideoNet provides the finest details among all ap-

proaches. The edges produced by CSVideoNet is much

sharper, while such details are no longer preserved by

other methods after reconstruction. This comparison

demonstrates that the temporal correlation is critical for

video reconstruction, the overlook of such featureswill sig-

nificantly degrade the recovery quality of videos. There-

fore, the conventional image CS approaches are not suit-

able for video applications.

4.2. Comparison with video CS approaches

We compare the proposed CSVideoNet with existing

video CS approaches. MC-BCS-SPL estimates motion di-

rectly from the current and the reference frame. GMM

models the spatial-temporal correlation by assuming all

Table 3: Performance comparison with video CS recon-

struction approaches.

CR MC-BCS-SPL GMM CSVideoNet

PSNR

25 22.41 23.76 26.87

50 20.59 21.26 25.09

100 19.67 19.64 24.23

SSIM

25 0.37 0.72 0.81

50 0.30 0.61 0.77

100 0.19 0.54 0.74

MAE

25 11.88 5.14 3.38

50 16.03 7.50 4.31

100 28.86 9.37 4.59

PSNR↓ 25→ 100 26% 17% 10%

pixels within a video patch are drawn from a GMM distri-

bution. GMM has the state-of-the-art performance among

conventional model-based video CS approaches [27]. To

the best of our knowledge, [9] is the only DNN-based work

proposed for video CS. The quantized results of average

PSNR, SSIM, and MAE for each method under different

CRs are shown in Table 3. It is observed that the pro-

posed approach improves PSNR by 3 to 5dB over the ref-

erence methods. Specifically, we find MC-BCS-SPL and

GMM have similar performance and perform much better

than the model-based image CS approach, D-AMP. How-

ever, their performance are similar to SDA and ReconNet,

which are designed for processing images. This implies

that the conventional model-based methods suffer from

limited performance due to the limited model capacity

when dealing with large-scale problem. Even though they

consider the temporal correlation among video frames, the

model capacity is insufficient for visual patterns. To im-

prove performance, one could increase the size of the con-

ventional models. However, the computational complexity

forof these meods will also increase substantially, inhibit-

ing their application to video CS.

DNN provides a viable solution. Both CSVideoNet and

VCSNet are designed for video CS reconstruction. For rea-

sons explained earlier, we compare the two approaches at

a CR of 16. The results are shown in Table 4 and Figure 5.

Both the two approaches achieve high recovery quality

compared to other baselines. However, VCSNet is a plain

fully-connect network that has limited capability for pro-

cessing sequential data. As a result, it suffers from a low-

quality motion estimation, which explains why it has infe-

rior performance compared to the proposed solution.
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Figure 4: Illustration of reconstruction results for each method at the CR of (a) 25, (b) 50, and (c) 100, respectively.

27.14dB 29.46dB

Ground Truth CSVideoNetVCSNet

Figure 5: Illustration of reconstruction results at the CR of

16.

Table 4: Performance comparison with VCSNet at the CR

of 16.

VCSNet CSVideoNet

PSNR 25.07704 28.078

SSIM 0.817669 0.8431

MAE 3.887867 2.9452

To illustrate that the performance improvement of the

proposed approach comes from integrating temporal fea-

tures through the LSTM network rather than simply in-

creasing the model size, we set another experiment, in

which we compare the performance of two CNNs with dif-

ferent sizes. The structure of the two CNNs are shown in

Table 5: Structures of CNN1 and CNN2.

# Layer 1 2 3 4 5 6 7 8 9 10 11 12 13

CNN1 1 128 64 32 32 16 16 1

CNN2 1 512 256 256 128 128 64 64 32 32 16 16 1
* CNN1 is used in CSVideoNet. The dimension of all feature maps in both CNNs are 32×32.

Table 5, and the performance comparison is shown in Ta-

ble 7. We can see that simply increasing the size of CNN

does not provide meaningful improvement for reconstruc-

tion. This, wh be explained by the incapability of CNN

to capture temporal features. The incorporation of the

LSTM network improves the PSNR by up to 4 dB, which

represents more than twice of error reduction. Specifi-

cally, the performance improvement increases with thea-

long wiachieves theits maximum wheR is 100. This ex-

plains that the implicit motion estimation by LSTM is crit-

ical to the video CS reconstruction especially at high CRs.

4.3. Performance under noise

To demonstrate that the robustness of CSVideoNet to

sensor noise, we conduct a reconstruction experiment with

input videos contaminated by random Gaussian noise. In

this experiment, the architecture of all DNN-based frame-

works remains the same as in the noiseless case. We test

the performance at three levels of SNR - 20dB, 40dB, and
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Table 6: Runtime comparison for reconstructing a 160×160
video frame at different CRs.

Model CR=25 CR=50 CR=100

D-AMP(F) 38.37 41.20 31.74

D-AMP(B) 8.4652 8.5498 8.4433

SDA 0.0278 0.027 0.023

ReconNet 0.064 0.063 0.061

MC-BCS 7.17 8.03 9.00

GMM 8.87 10.54 18.34

CSVideoNet 0.0094 0.0085 0.0080

Table 7: Performance comparison with CNN methods.

CR CNN1 CNN2 CSVideoNet

PSNR

25 24.27 23.74 26.87

50 22.47 22.17 25.09

100 20.44 20.10 24.23

SSIM

25 0.73 0.69 0.81

50 0.67 0.65 0.77

100 0.61 0.58 0.74

MAE

25 5.02 6.46 3.38

50 5.67 6.23 4.31

100 7.42 8.92 4.59

60dB. For each noise level, we evaluate all approaches at

three CRs of 25, 50, and 100. The average PSNR achieved

by eachmethod at different CRs and noise levels are shown

in Figure 6. It can be observed that CSVideoNet can reli-

ably achieve a high PSNR across at different noise levels

and outperform the reference methods consistently.

4.4. Time complexity

We benchmark the runtime performance of different

methods. Due to the iterative nature of conventional CS al-

gorithms (D-AMP, MC-BCS-SPL, GMM), they suffer from

high data-dependency and low parallelism, which is not

suitable for GPU acceleration. Due to the lack of GPU

solvers, we run these reference algorithms on an octa-

core Intel Xeon E5-2600 CPU. Benefiting from the feedfor-

ward data-path and high data concurrency of DNN-based

approaches, we accelerate CSVideoNet and other DNN-

based baselines using a Nvidia GTX Titan X GPU.The time

cost for fully reconstructing a video frame in the size of

(160×160) are compared in Table 6. CSVideoNet consumes
8 milliseconds (125 fps) to reconstruct a frame at the CR of

100. This is three orders of magnitude faster than the refer-

ence methods based on iterative approaches. The time cost

of VCSNet and CSVideoNet at the CR of 16 is 3.5 and 9.7

milliseconds, respectively. Through further hardware op-

timization, we believe CSVideoNet has the potential to be

integrated into CS cameras to enable the real-time recon-

struction of high-frame-rate video CS.

5. Conclusion

In this paper, we present a real-time, end-to-end, and

non-iterative framework for high-frame-rate video CS. A

20 40 60 Inf
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22

23

24

25

26

27
CR = 25

10

15

20
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20 40 60 Inf
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CSVideoNetMC-BCS-SPL GMM
SDAD-AMP ReconNet

Figure 6: PSNR comparison at different SNRs.

multi-rate CNN variant and a synthesizing LSTM net-

work are developed to jointly extract spatial-temporal fea-

tures. This is the key to enhancing the compression

ratio and recovery quality trade-off. The magnificent

model capacity of the proposed deep neural network al-

lows to map the inverse mapping of CS without exploit-

ing any sparsity constraint. The feed-forward and high-

data-concurrency natures of the proposed framework are

the key to enabling GPU acceleration for real-time recon-

struction. Through performance comparison, we demon-

strate that CSVideoNet has the potential to be extended as

a general encoding-decoding framework for high-frame-

rate video CS applications. In the future work, we will ex-

ploit the effective learning methods to decode high-level

information from compressed videos, e.g., object detection,

action recognization, and scene segmentation.
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