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A Configurable 12-237 kS/s 12.8 mW
Sparse-Approximation Engine for Mobile Data
Aggregation of Compressively Sampled
Physiological Signals

Fengbo Ren, Member, IEEE, and Dejan Markovi¢, Member, IEEE

Abstract—Compressive sensing (CS) is a promising technology
for realizing low-power and cost-effective wireless sensor nodes
(WSNs) in pervasive health systems for 24/7 health monitoring.
Due to the high computational complexity (CC) of the recon-
struction algorithms, software solutions cannot fulfill the energy
efficiency needs for real-time processing. In this paper, we present
a 12—237 kS/s 12.8 mW sparse-approximation (SA) engine chip
that enables the energy-efficient data aggregation of compressively
sampled physiological signals on mobile platforms. The SA engine
chip integrated in 40 nm CMOS can support the simultaneous
reconstruction of over 200 channels of physiological signals while
consuming <1% of a smartphone’s power budget. Such energy-
efficient reconstruction enables two-to-three times energy saving
at the sensor nodes in a CS-based health monitoring system as
compared to traditional Nyquist-based systems, while providing
timely feedback and bringing signal intelligence closer to the user.

Index Terms—Application-specific integrated circuits (ASICs),
biomedical signal processing, compressed sensing, digital inte-
grated circuits, energy efficiency, low-power design, minimization
methods, parallel architecture, real-time systems, reconfigurable
architecture, signal reconstruction.

I. INTRODUCTION

IGITAL electronic industry today relies on Nyquist

sampling theorem, which requires to double the size
(sampling rate) of the signal representation on the Fourier
basis to avoid information loss. However, most natural signals
have much sparser representation on some other, non-Fourier,
orthogonal basis. This implies a large amount of redundancy in
Nyquist-sampled data, making compression a necessity prior to
storage or transmission [1], [2]. Recent advances in compres-
sive sensing (CS) theory suggest an alternative data acquisition
framework that can directly access the signal information in its
sparse domain [3], [4]. Compared to the conventional Nyquist
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framework, the CS framework has several intrinsic advantages.
First, random encoding is a universal compression method that
can effectively apply to all compressible signals regardless of
what their sparse domain is. This is a desirable merit for the
data fusion across multiple signal sources. Second, sampling
and compression can be performed at the same stage in CS,
allowing for a sampling rate that is significantly lower than the
Nyquist rate. Therefore, CS has a potential to greatly impact
the data acquisition devices that are sensitive to cost, energy
consumption, and portability, such as wireless sensor nodes
(WSNs) in mobile and wearable applications [5].

Especially, CS is a promising solution for realizing the on-
body WSNs in pervasive health systems toward 24/7 health
monitoring [6]. Electrocardiogram (ECG), electromyography
(EMG), and electroencephalogram (EEG) signals (collectively
referred to as ExG) contain critical information about human
body status and are therefore the main targets in health monitor-
ing applications. As shown in Fig. 1, a CS-based wireless health
monitoring system includes the on-body WSNs that utilize a
unified random encoding scheme to compress different physio-
logical signals to reduce the data size for transmission (thereby
saving transmit energy), and a mobile data aggregator that per-
forms real-time signal reconstruction to promote on-site analy-
sis and processing for real-time applications. Such a system has
numerous benefits. First, it brings the signal intelligence closer
to the user for timely prediction and decision-making. This
is particularly important for real-time tasks such as arrhyth-
mia and seizure detection, EMG-driven machine actuation, and
brain—computer interface. Second, by reconstructing the sparse
coefficients of the original signal only, the data size for on-site
storage or transmission to the cloud can be further reduced. For
practical use, the data aggregator is desired to have a sufficient
throughput for reconstructing > 50 channels of physiological
signals (sampled at < 1kHz) in real time [7]. Additionally, to
minimize the overhead of adding such a function to a mobile
device, the power consumption of the data aggregator is desired
to be bounded within 1% of a mobile device’s 2 W power
budget. This implies a sparse-approximation (SA) engine that
can support > 50kS/s throughput in <20 mW of power (see
Fig. 2). It is also desirable to have flexibility for varying spar-
sity parameters, orthogonal basis, and the number of channels.
Such a set of specifications imposes significant challenges to
the hardware implementation.
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Fig. 1. (a) CS-based wireless health monitoring system with desired system
requirements: on-body WSNs that utilize a unified random encoding scheme
to compress data for low energy and a mobile data aggregator that performs
real-time signal reconstruction for timely prediction and proactive prevention.
To further reduce the data size for storage or processing, only the sparse
coefficients of the signal are reconstructed. Reconstruction takes <1% of a
mobile device’s power budget, allowing 2—3 X energy saving of the sensors
[5]. (b) Amplitude and frequency characteristics of ExG signals.

The first challenge is the complexity of SA algorithms. SA
is an optimization problem that involves complex operations in
an iterative process with intensive memory access. Compared
to the orthogonal transformations used in the Nyquist frame-
work, SA algorithms have greater computational complexity
(CC) and higher data dependency (DD). The second challenge
stems from the intricacies of physiological signals. ExG sig-
nals can span three orders of magnitude in both amplitude
(10 nV to 10 mV) and frequency (0.1-500 Hz) (see Fig. 1).
In addition, due to the difference in physiological activity of
the signal sources, these signals could have sparse representa-
tions on completely different orthogonal bases. Furthermore,
their sparsity is time-varying depending on the subject’s activ-
ity [8]. For the best reconstruction results, the hardware design
must be able to handle a high dynamic range and flexible prob-
lem settings, such as reconstruction basis (W), error tolerance
(e), signal and measurement dimensions (n and m), and signal
sparsity level (k).

So far, there has been very limited work and demonstration
of dedicated SA solver chips [9]-[11]. The application-specific
integrated circuit (ASIC) implementations of three greedy algo-
rithms are first presented in [9] for the long-term evolution
(LTE) channel estimation in wireless communication appli-
cations. These implementations in 180 nm CMOS feature
a target throughput of 2 kS/s with the power consumptions
of 88-209 mW. A 65 nm generic solver chip implementing
the approximate message passing (AMP) algorithm is demon-
strated in [10] for an audio restoration application. This chip
achieves a target throughput of 397 kS/s at the power con-
sumption of 177.5 mW for processing audio signals that have
a relatively lower sparsity. Prior designs mainly focused on
achieving the target throughputs, with much less emphasis on
power/energy and area efficiency. Besides, prior designs were
optimized for a limited dynamic range and a fixed problem
setting, making them unsuitable for biosensing applications.
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In this paper, we present a configurable and energy-efficient
SA engine chip in 40 nm CMOS that addresses above chal-
lenges and makes the CS technology accessible to mobile users.
The chip testing results illustrate a reconstruction throughput
of 66-237 kS/s and a power consumption of 12.8 mW when
operating at Vpp = 0.7 V. Such level of performance can sup-
port the simultaneous reconstruction of over 200 channels of
compressively sampled ExG signals in real time while consum-
ing <1% of a smartphone’s power budget. The high energy-
efficiency of our chip results from an algorithm-architecture
codesign approach that facilitates the tight interactions between
1) algorithm reformulations that reduce the algorithm com-
plexity by an order of magnitude; 2) a configurable system
architecture that leads to nearly 100% utilization of comput-
ing resources; and 3) an efficient memory control scheme that
cuts down the memory usage by half. The system architec-
ture of the SA engine chip is optimized toward mapping the
orthogonal matching pursuit (OMP) algorithm and its vari-
ants [12], [13]. Because human body is expected to have a
low activity on average where ExG signals feature a high
sparsity, especially when dynamic thresholding schemes are
used [8], this is where OMP has better complexity—accuracy
tradeoff than other SA algorithms [14]. The SA engine chip
implements domain transformation by explicit matrix multi-
plication thereby supporting signal reconstruction on arbitrary
basis. Additionally, the SA engine adopts the single-precision
floating-point data format to achieve a large dynamic range
and can be configured at run time to handle flexible problem
settings and accurately recover a wide range of physiological
signals.

II. ALGORITHM REFORMULATION TOWARD ENERGY
EFFICIENCY

Energy efficiency is the metric indicating how much com-
puting can be performed with a finite energy source. For
dedicated algorithms running on hardware, energy efficiency
is usually defined as the energy consumption per algorithmic
execution, which can be measured by the ratio of power (J/s)
and processing throughput (S/s). From the hardware perspec-
tive, both the CC and the DD characteristics of an algorithm
impact the energy efficiency. A high CC indicates a large
amount of computations per algorithmic execution, implying
more switching energy from the logic gates. On the other hand,
a high loop-carried DD indicates low concurrency of computa-
tions, generally implying increased memory usage and longer
execution time that leads to higher leakage energy.

OMP is a fast and heuristic algorithm that can recover a
k-sparse signal in exact k iterations given the constraints in
the context of CS [3], [4], [12]. The pseudocode of the orig-
inal OMP algorithm is shown in Table I (see Appendix for
notations). Note that Cholesky factorization is favored over QR
factorization as the numerical method for solving the least-
squares (LS) problem since QR factorization requires three
times more memory for storing the factorization matrices,
which is undesired for memory-leakage-limited design. In each
iteration, three tasks are performed: 1) atom searching (AS)
for updating the active set; 2) LS solving for computing the
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TABLE 1
PSEUDOCODE OF THE OMP ALGORITHM

Task  Step Operation
1 r0=y,x0=6,d=6,/10=(2),t=1.
AS  2° c=ATr,_y, ¢ = argmax; |c(i)|, A, = A;_1 U @.
LS 3 x(A,) = argmin, Il y — Ay,b 3.
EU 4 =1 — Ay x(ly), t=t+1
5 If || ry I,< &, break; otherwise, go to Step 2).

* Assuming that all atoms in A are normalized.
#Refer to Appendix and [12] for notations.
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Fig. 2. Complexity characteristic of the OMP algorithms. The impact of the
reformulation techniques is making OMP more energy-efficient for hardware
implementations by simplifying the LS task.

estimation; and 3) estimation update (EU). The complexity
characteristic of the OMP algorithms is illustrated in Fig. 2.
Note that the LS task is a minimization problem that involves
both high CC and loop-carried DD [14]. For energy-efficient
mapping, three algorithm reformulation techniques are previ-
ously introduced to break down the LS task into four basic
linear algebra (BLA) operations (at each iteration) [14]-[16].
The pseudocode of the reformulated OMP algorithm is shown
in Table II (see Appendix for notations). Such simplification
not only reduces the total CC of the LS task from O(mk®)
to O(mk?) but also cuts the number of data-dependent loops
involved from k3 down to k2 (see Appendix B for definitions
of n, m, k in the context of CS), making the reformulated OMP
algorithm much more suitable for an energy-efficient hardware
implementation [14].

In the reformulated OMP, the AS task that features high
CC but low DD has the biggest impact on throughput.
Parallelization is applied in our architecture design to relax the
transistor switching speed for gaining energy efficiency. On the
other hand, the LS task plays a pivotal role on hardware uti-
lization. Note that any hardware resource designed exclusively
for the LS task will have a very low utilization rate due to the
low CC. Consequently, resource sharing is applied in the archi-
tecture design to improve hardware utilization and gain energy
efficiency from reduced area and leakage costs.
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TABLE 11
PSEUDOCODE OF THE REFORMULATED OMP ALGORITHM

Task  Op. Algorithm
1 Initialize: 7y = y,x, = 0,d = 0,4y = ®,t = 1

While || ,_; I3< cort <t do

max>

c=A"r_,, ¢ =argmax; |c(i)|, A, =AU @

h= AAtTaq,
Le_yw =h(1:t - 1), l; = w./diag (D;_,)
6a  dyy=h(t)— ly'w

2
AS 3
4
5

L,_ D., 0
LS L= t;ﬂ,Dt:[—‘tTl )
6b' Ly 1 07 dy
(L=1,D, = a(pTa(p)
0
7 LTd= [ ]
‘ c(@)/ da
EU 8

Xt =X+ d, e =T —Apd, t=t+1

End while, return x,

* Assuming that all atoms in A are normalized.
fMemory operation only.
#Refer to Appendix and [12] for notations.
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Fig. 3. System architecture of the SA engine chip.

III. ARCHITECTURE DESIGN
A. System Architecture

The system architecture of the SA engine chip is shown in
Fig. 3. The computing resources include the vector and scalar
processing cores (VC and SC). In order to support a real-
time throughput with high energy efficiency, 128 processing
elements (PEs) are coordinated in parallel through the intercon-
nect block (IB) in the VC. These PEs can process independent
data in a single-instruction-multiple-data (SIMD) fashion or
interconnected by the IB to perform pipelined operations. The
large parallelism of PEs allows the SA engine to achieve the
target throughput at a scaled supply voltage and reduced oper-
ating frequency. Therefore, additional energy efficiency can be
gained from the relaxed transistor performance. Depending on
the top-level data-path configuration, SC can either postpro-
cess a selective result from the VC through the VC-multiplexer
(VC-MUX) or process independent data from memories in
parallel.
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For efficient local memory access, a dedicated cache is
assigned to each PE in the VC and the SC, respectively. To
facilitate the data communication between VC and SC in long
delay lines, such as carrying over intermediate results between
different tasks or different iterations of the algorithm, a shared
cache can be accessed by all the PEs in the VC and the SC. In
addition, a core-level shift-register logic (SRL) unit (core-SRL)
is used to connect all the PEs with the SC. This customized
feedback path minimizes the loop latency between VC and SC
by avoiding any memory access, thereby accelerating the itera-
tive BLA operations such as forward and backward substitution
(FS and BS). A dedicated memory unit stores the index of the
active set. The controller of this memory unit is also responsi-
ble for accessing the data in the sampling matrix from external
memories.

To allow the processing of different signal representations,
a parallelized fixed-to-floating-point conversion interface is
available at the external input of the VC. Note that there are
several data-paths bridging the VC and SC in the system archi-
tecture. The complex data flow of the reformulated OMP is
enforced by the customized local memory controllers (‘“PE-$-
CTRL” and “SC-$-CTRL” in Fig. 3), which are coordinated by
a global controller. All these controllers are dedicated finite-
state machines (FSMs) with programmable state transition
contingent upon the values of the configuration bits (“config-
bit” in Fig. 3). The configuration bits set the problem size
(m, n) and error tolerance (¢) for each run of the algorithm.
Therefore, the SA engine can be configured with a different
problem setting for each reconstruction. Note that the memory-
based data-flow-control schemes are efficient in handling data
reordering operations, such as matrix transpose, since most
of the data movements can be realized by pointer manipula-
tions. The dynamic configuration of the computation cores is
also controlled by dedicated FSMs in a similar fashion. The
SA engine uses first-in-first-out (FIFO) interfaces to handle the
flow control at the data I/Os. When a reconstruction is done, the
chip loads new random samples (y) and unloads reconstructed
sparse coefficients (“Zya1ye” in Fig. 3) with their index (“z1o.”
in Fig. 3) simultaneously. Once the loading and unloading are
complete, the next reconstruction is kicked off.

B. Computation Cores

The block diagram of the PE in the VC is shown in Fig. 4.
The PE integrates two basic arithmetic units in a pipeline: a
multiplier and an adder. Flexible data-path connections are real-
ized by inserting multiplexers at each input of the arithmetic
units. Therefore, the PE can be dynamically configured to exe-
cute different operations or take different operands through the
control bits of the multiplexers. Note that the multiplier can be
bypassed by setting one of its inputs to 1, and the adder can
be bypassed by resetting the SRL output to 0. Therefore, the
PE can perform a selective set of operations including multi-
plication, recursive multiplication, power operation, addition,
accumulation, and MAC.

On the VC level, the 128 PEs can perform vector operations
in an SIMD fashion including vector addition, element-wise
multiplication, element-wise MAC, and vector—scalar product.
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To enable folded processing of long vectors, an SRL unit is
inserted into the feedback path of each PE. The folding fac-
tor is dictated by the latency of the SRL unit. In addition, the
PEs can be coordinated through the IB to compute vector inner
products (Fig. 4). The IB connects the adders distributed in dif-
ferent PEs into a pipelined adder tree through the registers and
multiplexers inside the PEs, so that the element-wise products
can be added up to a scalar. The inner product computation
in this mode is highly scalable: for a different vector length,
the corresponding result can be selected by the VC-MUX at a
different pipeline stage. The folded inner product computation
in this mode needs an additional accumulator at the output of
VC-MUX, which is carried by the SC.

The block diagram of the SC is shown in Fig. 5. The SC
integrates a comparator, a sequential divider, and two adders
with configurable data-paths. Similar to the VC, the SC can also
be configured to perform a variety of operations through the
control bits of the multiplexers. When the SC is cascaded with
the VC, complex operations such as correlation sorting, FS, and
BS can be performed.

The first stage adder in the SC plays a critical role in two
tasks. First, it accumulates the result from the VC to support
folded inner product. Second, it adds the RHS of a linear equa-
tion to the LHS for performing FS and BS. The sequential
divider is used to handle the inverse of a diagonal matrix as
in op. 5 of Table II. Note that the division in op. 5 is not part of
the data-dependent loops in solving FS. Therefore, the latency
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Fig. 6. Data mapping scheme of PE caches in the (a) mirror and (b) shuffle
mode for handling Cholesky factorization.

of the divider has no impact on the throughput of FS execution.
Five pipelined stages are inserted (through retiming) to remove
the divider from critical path. The comparator is used to per-
form sorting tasks, such as sorting the correlation coefficients
in the AS task. The second-stage adder can be used to update
the results of folded inner product as in op. 6a of Table II or to
update independent data as in op. 8 of Table II.

C. Memory Control Scheme

In the LS task of the reformulated OMP, the parallel column
and row access of the triangular Cholesky factorization matrix
L € R**¥ are required for performing FS and BS, respectively
[17]. As accessing a row of L is equivalent to accessing a col-
umn of L7, a straightforward memory mapping scheme of PE
caches is to store both L and L in a square matrix as illus-
trated in Fig. 6(a). We refer to this data mapping scheme as
the mirror mode. In the mirror mode, columns of L and LT
can be accessed at the same address of each PE cache in an
ascending and descending order, respectively. For instance (see
Fig. 6), the column vector Iy, I, and I3 can be accessed in par-
allel by reading the data at address 0, 1, and 2 of each PE cache,
respectively. The row vector IT, 1T, and IT can be accessed in
parallel by reading the data at address 4, 3, and 2 of each PE
cache, respectively. An advantage of the mirror mode is that a
large square matrix can be easily folded into smaller sub-blocks
so that a large-size Cholesky factorization can be computed in a
folded fashion by utilizing the PE-SRL and the core-SRL units.
An example data folding scheme in the mirror mode is illus-
trated in Fig. 7(a), where a folding factor of 1.5 is presented
with 128 parallel PEs and k& = 192.

The down side of the mirror mode is that it doubles mem-
ory space for storing L. Since the SA engine is a memory-
leakage-limited design, where memory leakage has significant
impact on the system’s energy efficiency, the mirror mode is
highly undesired. To avoid such an overhead, we propose a
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shuffle-mode scheme that is more efficient in utilizing memory
space in our design. In the shuffle mode, the row elements of L
are stored across adjacent PE caches in a shuffle order as illus-
trated in Fig. 6(b). The data are shuffled such that the row access
pattern remains the same, but the column of L can be accessed
from the same memory space by using an incremental address
pattern across PE caches. Note that a circular position shift must
be performed at the memory output in order to recover the cor-
rect data order. For instance (see Fig. 6), the column vectors
l1, l5, and I3 can be accessed in parallel by reading the data at
address 0, 1, and 2 of each PE cache with a position up-shift by
0, 1, and 2, respectively. Differently, the row vector llT, IQT, and
1T can be accessed in parallel by reading the data at the address
set of [0, 1, 2, 3], [X, O, 1, 2], and [X, X, 0, 1] with a position
up-shift by 0, 1, and 2, respectively.

By adopting the shuffle-mode scheme, a 2x memory size
reduction is achieved as compared to the mirror-mode case.
According to the postlayout simulation results, this leads to
another 40% saving in total power consumption of the chip due
to the reduced memory leakage. The corresponding data folding
scheme of the shuffle mode is illustrated in Fig. 7(b).

D. Dynamic Configuration of System Architecture

Taking advantages of the reformulated OMP algorithm with a
simplified LS task, we manage to reuse computing resources to
perform all the three tasks through dynamic configuration. Due
to the intrinsic DD between the six BLA operations in Table II,
the proposed resource sharing scheme maximizes the hard-
ware utilization rate and area efficiency without introducing
throughput overhead.

Fig. 8 illustrates the dynamic configuration of the system
architecture in three tasks. In the AS task, the VC is cas-
caded with the SC in pipeline. The VC accesses a; and ;1 in
parallel from the external memory and the PE caches, respec-
tively. The PEs are configured to compute their inner product as
¢ (1) = a;r4—1. The SC accumulates the result when folding is
enabled and compares the absolute values of ¢ (7) with that of
¢ (i — 1). The smaller value is dropped, while the larger value
and the associated column index is buffered for the next com-
parison. After all the correlation coefficients are compared, the
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column index of the maximum component is written into the
active set memory.

In the LS task, a series of matrix—vector multiplications, FS,
divisions, and BS need to be executed (see ops. 4—7 in Table II).
For computing matrix—vector multiplications in ops. 4 and 6a,
the same configuration as in the AS task is used. Differently,
in order to compute FS and BS using recursive vector opera-
tions, the core-SRL is enabled to link the adder in SC with the
PEs in the VC into parallel loops. The SRL units in the PEs are
also enabled to support the folded computation of large-size FS
and BS. Fig. 9 illustrates the data-path configuration of com-
puting resources in the VC and the SC for computing the FS
in op. 5 (Table II). Note that performing FS and BS in an iter-
ative fashion has little impact on the system throughput. This
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Fig. 9. Data-path configuration of the computing resources in the VC and the
SC for computing FS and BS.

is because 1) FS and BS are intrinsically an iterative process
that has loop-carried DD and 2) the LS task is not the through-
put bottleneck in the reformulated OMP as shown in Fig. 2. In
addition, computing FS and BS using vector-based operations
allows for the reutilization of the VC and improves the hard-
ware utilization rate. When the FS in op. 5 (Table II) executes
iteratively using the configuration shown in Fig. 9, the subse-
quent divisions can be then scheduled to the SC and executed
by the pipelined sequential divider cascaded.

In the EU task, the two computation cores are configured to
update the estimation results separately. The VC accesses A,
and d (A;) from the external memory and the shared cache,
respectively. Note that the active atoms A,, are accessed by
using the contents from the active set memory as the read
address. One should also note that the matrix—vector multipli-
cation ¢ (i) = Ar;_1 in the AS task is executed by computing
the independent inner products as a;r;—;. Differently, the
matrix—vector multiplication v = A, d (A¢) in the EU task is
computed in a column-wise fashion by configuring the PEs into
an element-wise MAC mode. Each clock cycle, one column of
A, and a single element of d (A;) are accessed and multiplied,
and the results are accumulated element-wise in the SRL units
in PEs. After ¢t x I cycles, where F' is the folding factor, the
result v will be available in the SRLs. Then, the residual r; is
updated by the PEs in parallel as r; = r,_; + v. Meanwhile,
the SC updates z; element-wise as x; (i) = x;—1 () + d (i)
whenever d (i) is read out from the shared cache. The over-
all dynamic configuration scheme of the SA architecture is
summarized in Table III.

IV. CHIP IMPLEMENTATION

The die photo and chip summary are shown in Fig. 10. The
SA engine chip is implemented in a 40 nm 1P8M CMOS pro-
cess using a standard-cell-based design flow. The RTL codes are
synthesized in synopsys design compiler (DC). To achieve the
target throughput, a clock period of 60 ns (16.7 MHz) evaluated
at the worst-case process, voltage, and temperature (PVT) cor-
ner is targeted throughout the chip implementation. Taking into
account the overhead to be introduced by the subsequent phys-
ical design, a 22% timing slack is used during the synthesis.
Specifically, the SA engine is synthesized with a target clock
frequency of 16.7/(1 — 0.22) = 21.4 MHz. To reduce leakage
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TABLE III
SUMMARY OF DYNAMIC CONFIGURATION SCHEME OF THE SYSTEM ARCHITECTURE
Task | Op. PEs PE-SRL | IB | VC-MUX | Core-SRL SC PE-$" | SC-$" | Shared$" | Active set”
AS 3 Inner Prod. OFF ON Static OFF ACC,CMP | R/1p OFF OFF W/ A
4 Inner Prod. OFF ON Static OFF ACC OFF OFF W/ h R/ A
g 5 MAC ON off | Dynamic ON ACC,DIV | R'WL R/D R/ h, W/ w OFF
L
6 Mult./Inner Prod. OFF ON Static OFF ACC R/L W/ D R/w OFF
7 MAC ON off | Dynamic ON ACC,DIV | R/LT OFF W/ d OFF
EU 8 MAC ON OFF OFF OFF ACC,ADD | R'Wr | R'Wx R/ d R/ A
*R/W = read/write.
4— 2.28 mm —mm
Testing memory
PE-$ 0-7
e 40 nm 1P8M
PE-$ 8-23 CMOS
i Technolo
VC PE 16-31| gy FO4 16.3 ps
PE-$ 24-39 (TT)
VC PE 32-47 -
PE-$ 4055 Transistor | SVT 0.11%
= | VC PE 48-63 flavor HVT 99.89%
€ PE-$ 56-63, Transistor
LN 5 61M
N VCPE64-79 3 count
a Digital 42/58
| PE-$ 72-87 /Os Power 156
| VC PE 80-95 -
PE-$ 88-103 Core Voo [ 090051V
. VCPE96-111 Mem 0.7-1V
i PE-$ 104-119 h I/O Voo 25V
VC PE 112-127 :
| 2
PES 120-127 Core size| 5.13mm

| : Testing memory

Fig. 10. Die photo and summary of the SA engine chip.

power, the SA engine is first synthesized using high-threshold
(HVT) standard cells only.1 Then, standard-threshold (SVT)
standard cells are selectively inserted to the critical paths for
timing improvement. This is carried out by switching ON the
leakage optimization tool in DC.

The PE cache, SC cache, and shared cache in the SA engine
have a memory size of 1.2 KB, 1.5 KB, and 768 B, respec-
tively. Note that there are a total of 128 instances of the PE
cache in the design. To reduce area cost, the PE caches are
realized using dual-port SRAM hard macros. Differently, the
SC cache and the shared cache are realized using synthesized
RAMSs mainly because they can be flattened during the physical
design to facilitate floorplanning. For voltage scaling purposes,
the SA engine is split into two power domains. The PE caches
realized by SRAM macros are under the memory (high volt-
age) domain, while the rest of the design is under the logic (low
voltage) domain. Lever shifters are placed along the boundary
of SRAM macros to handle signaling across the two voltage
domains.

'The HVT option is not available in our memory complier. The transis-
tors used in the memory macros are still SVT. Therefore, the memory leakage
dominates the system leakage power.

The physical design of the SA engine is performed in
Cadence Encounter. To reduce the run time, a bottom-up hier-
archical design method is adopted. Specifically, the PE and the
PE cache are first placed and routed separately at the block
level. During the chip-level floorplanning, these two blocks are
treated as hard macros. For the best implementation results, the
rest of the design is flattened during the top-level placement and
routing. Note that the PE macro is routed using M1-M4 only
so that the 128 instances will not block the routing channels on
M5-MS during the top-level placement and routing.

To facilitate the top-level routing, the PE and PE cache
instances are grouped into 128 pairs, which are then placed into
16 rows. In each row, eight pairs of the PE group are placed
evenly with a 50 um space in between. To enhance power deliv-
ery, a global power grid is routed across both of the voltage
domains over the entire chip. To minimize IR drops, the global
power stripes are routed using the redistribution (RDL) and M8
layers that have smaller resistance and support higher current
density.

Overall, the SA engine chip occupies a core area of 5.13 mm?
with an aspect ratio of 0.99 and integrates 61 M transistors. For
the leakage reduction purpose, HVT devices are used in 99.89%
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Fig. 11. Testing environment of the SA engine chip.

of the logic cells. The SA engine chip has 42 digital inputs, 58
digital outputs, and 156 power pads supplying three different
power domains. The I/O domain has a constant supply voltage
of 2.5 V. The logic and memory domain both have a nominal
supply voltage of 0.9 V, while each operates up to 1 V and down
to 0.5 and 0.7 V, respectively.

V. CHIP TESTING
A. Testing Environment

The chip testing environment is illustrated in Fig. 11. A
Kintex-7 KC705 FPGA board is used as the testbed for map-
ping hardware test benches. A customized printed circuit board
(PCB) is designed to host the SA engine chip for testing. The
SA engine chip is wire-bonded to a 256-pin pin grid array
(PGA) package and then mounted to the host PCB through a
zero insertion force (ZIF) socket. The host PCB is connected
to the KC705 board through two high-speed FPGA Mezzanine
Card (FMC) connectors. A clock generator is used as the exter-
nal clock source for both the FPGA and the SA engine chip.
The clock is injected to the host PCB through an SMA connec-
tor and then passed to the FPGA board through the dedicated
clock pins in the FMC connector. In order to control and mon-
itor the chip testing process on a computer, Xilinx ChipScope
IPs are utilized in the test bench design. Specifically, ChipScope
virtual I/O (VIO) is used as the soft registers both to store the
static control bits of the SA engine chip and the test bench and
to monitor the static outputs indicating the chip status. In addi-
tion, ChipScope integrated logic analyzer (ILA) is used as the
probes to capture the dynamics of all the digital I/Os of the SA
engine chip.

B. Testing Results

Several 1 min recordings of real ExG signals downloaded
from the PhysioBank database are used in the signal reconstruc-
tion test [18]. Specifically, the original ExG signals are encoded
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Fig. 12. Averaged RSNR performance of the SA engine chip for EXG signal
reconstruction. The ECG, EEG, and EMG signals are reconstructed on the Haar
DWT, DCT, and DWT-DCT joint basis, respectively.

by random Bernoulli matrices with a 5% overlapping win-
dow applied at different signal dimensions and under-sampling
ratios (see Appendix B). Then, the random samples are fed into
the SA engine chip to reconstruct the signal coefficients on a
specific sparsifying basis. The original signal can then be recov-
ered by back projecting the reconstructed sparse coefficients
into time domain. In order to observe the raw signal sparsity,
no thresholding scheme is applied in our test. To measure the
reconstruction accuracy, we use the metric of reconstruction
SNR (RSNR) defined as

RSNR = 20 log,, <”x”2> (1)
|z =22

where x is the original signal and z is the recovered esti-
mation of x. The averaged RSNR performance measured on
the SA engine chip is shown in Fig. 12. The best orthogonal
basis for reconstructing the chosen ECG, EEG, and EMG sig-
nals is found to be Haar discrete wavelet transform (DWT),
discrete cosine transform (DCT), and DWT-DCT joint basis,
respectively. It is also found that the RSNR performance is sen-
sitive to the error tolerance (¢) setting of the chip. Dynamically
configuring € to 3%—5% of the energy of random samples
results in the best RSNR performance. In general, higher
under-sampling ratio improves the RSNR performance at the
cost of higher data rate for radio transmission. In addition, at
the same under-sampling ratio, using a higher signal dimen-
sion in compressive sampling improves RSNR slightly at the
cost of reduced throughput and increased energy consumption.
Therefore, given a target RSNR, there exists an optimal chip
setting for achieving the maximum throughput. For reconstruct-
ing the ECG, EMG, and EEG with a target RSNR of > 15dB,
the preferred chip setting is found to be {n = 256, m > 90},
{n =128,m > 58}, and {n =512, m > 205}, respectively.
These settings indicate that an under-sampling ratio (m/n)
of 0.35, 0.45, and 0.4 can be achieved (for > 15dB RSNR)
on the ECG, EMG, and EEG sensor nodes through compres-
sive sampling, which corresponding to an approximate sensor
energy saving of 2.8x, 2.5x, and 2.2x, respectively, due to
the reduced data size (m/n) for wireless transmission [5].
Example ExG signals reconstructed at the preferred settings are
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Fig. 13. Examples of ExG signals reconstructed on the SA engine chip
with a > 15dB RSNR performance. The ECG, EEG, and EMG signals are
reconstructed on the Haar DWT, DCT, and DWT-DCT joint basis, respectively.
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Fig. 14. Measured power and operating frequency at different supply voltages.

illustrated in Fig. 13. Note that the chip is flexible enough to
accommodate various physiological signals and reconstruction
quality requirements through the configurable settings of m, n,
and ¢ and the support for different reconstruction bases.

The measured power and operating frequency of the SA
engine chip at different supply voltages are shown in Fig. 14.
The memory and logic domain (Viyem and Viggic) of the SA
engine chip can operate down to 0.7 and 0.5 V, respectively.
The minimum energy point (MEP) for operation is found at
Viogic = Vimem = 0.7V, which is the minimum supply voltage
the SRAM macros can operate at. At the MEP, the chip has
an operating frequency of 12.2 MHz and a power consump-
tion of 12.8 mW. The breakdown of total power consumption
by dynamic power, logic leakage power, and memory leakage
power is shown in Fig. 15. Note that the SA engine chip is
a memory-leakage-limited design. At the MEP, memory and
logic leakage contribute to 64% and 23% of the total power con-
sumption, respectively. As we further scale down Ve while
keeping Viyem at 0.7 V (for functionality), the memory leakage
power becomes increasingly dominant. At the minimum sup-
ply voltages, 84% of the total power is consumed by memory
leakage. This indicates that lowering Viogic below 0.7 V will
reduce the operating frequency without making much impact
on the total power consumption, thereby degrading the energy
efficiency. Compared to the MEP, a two-time higher operating
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Fig. 15. Power breakdown at different supply voltages. At the MEP (Viogic =
Vimem = 0.7 V), memory and logic leakage power contribute to 64% and 23%
of the total power consumption, respectively.

TABLE IV
MEASURED THROUGHPUT AND ENERGY EFFICIENCY OF THE SA
ENGINE CHIP

Signal dimension (n)

MEP

@ 128 256 384 512 640 768 896 1024
ECG 387 2370 102 79 64 38 33 29

Throughput” T

e EMG 213 1230 s4 41 24 20 13 12
EEG 331 201 87 | 66! 54 32 27 19
ECG 33 | 541 125 163 200 337 390 444

Energy

efficiency’ EMG 60 | 1041 238 312 536 640 954 1087

(nW/sample) “or TS0 63 147 L1941 238 399 466 685

*Measured at the MEP for ExG signal reconstruction.
TThe highlighted numbers are the best performance at an RSNR of
>15dB.

frequency can be achieved at Vpp = 1V with a six-time higher
power consumption.

The measured throughput and energy efficiency of the SA
engine chip when operating at the MEP for ExG signal recon-
struction are summarized in Table IV. At the MEP, the chip
achieves a throughput of 237, 123, and 66 kS/s and an energy
efficiency of 54, 104, and 194 nJ/sample for reconstructing
ECG, EMG, and EEG signals at RSNR > 15dB, respectively.
Such level of performance is sufficient to support the simul-
taneous reconstruction of 237, 61, and 132 channels of ECG,
EMG, and EEG signals, respectively. Operating at Vpp = 1V,
the chip can achieve a two-time higher throughput at the cost of
a three-time lower energy efficiency.

The SA engine chip is compared to an Intel Core i7-4700MQ
processor and two existing SA solver chips [9], [10] designed
for different applications in Fig. 16. For fair comparison, the
designs that implement fast algorithms (such as FFT) for a ded-
icated sampling matrix are not considered for our comparison,
since the SA engine chip implements domain transformation
explicitly and supports arbitrary sampling matrices. In addition,
we apply the same problem settings used in the reference design
when making the comparison. While the reference designs tar-
geted a fixed problem setting and a limited dynamic range, our
chip handles flexible problem settings at run time and supports
a large dynamic range. Overall, the SA engine chip achieves
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Design Intel i7-4700MQ [9] [10] This work
Technology 22 nm 180 nm 65 nm 40 nm
Target app General LTE channel estimation Audio Biomedical sensing

Algorithm OMP/AMP MP | GP | OMP AMP OMP, K-OMP
Max. signal dim. (n) Large 256 5120) Up to 1024
Max. meas. dim. (m) Large 200 512 Upto 512

Max. sparsity level (k) Large 50 18 10 - Up to 192
Core area (mm2) 174.4 073 | 1.21 | 242 0.629 5.13
Data format Double precision Fixed point Fixed point Single precision
PE parallelism SSE4 2 | 8 32 128
Local memory (kB) 7424 - 5.76 147
Freq. (MHz) 239 140 | 128 333 274
Throughput (kS/s) 5-986) 2 397 12-237@
Power (mW) 47,000 88 209 | 200 1775 8.6-78
Energy efficiency* 451,322 2444 | 5778 | 11222 - 32 (high sparsity)
(nd/sample) 503,028 - 223 3896) (low sparsity)

* Technology scaling to 40 nm: delay~1/S, power~1/U2, where S = L/40 nm, U = Vpp/0.9 V.
1 The supported problem size is 1024x512, butonly half of the sampling matrix is generic.

2 ExG reconstruction throughput measured at MEP.

3 ExG reconstruction throughput measured in MATLAB simulation.
45For fair comparison, the numbers are reported using the same problem settings (m,n,k) as in the

reference design.

Fig. 16. Comparison to state-of-the-art.

a two-time higher throughput with up to 14,100 times bet-
ter energy efficiency for ExG signal reconstruction than the
software solver running on the CPU. For high-sparsity signal
reconstruction (£ < 4%), the SA engine chip is 76-350 times
more energy efficient than the reference design [9]. For low-
sparsity signal reconstruction (% > 16%), the SA engine chip
is less energy efficient than the reference design implementing
the AMP algorithm [10] since the number of iterations required
by AMP is less dependent on the signal sparsity level.

VI. CONCLUSION

In this paper, we present a 12-237 KS/s 12.8 mW SA engine
chip for enabling the energy-efficient data aggregation of com-
pressively sampled physiological signals on mobile platforms.
Taking an algorithm-architecture codesign approach, we apply
a combination of techniques to optimize the SA engine chip
toward high energy efficiency. First, by applying algorithm
reformulations, we reduce the CC and the data-dependent loops
involved in the LS task by an order of magnitude. This saves
dynamic and leakage energy from eliminated computation and
reduced execution time per functionality, respectively. Second,
we propose a configurable system architecture, in which all
the computing resources are shared across different tasks. This
maximizes the hardware utilization and minimizes the overhead
of LS computation. Third, by introducing the shuffle-mode
memory control scheme, we effectively cut down the memory
usage for handling Cholesky factorization by half and saves
another 40% of the total power from reduced memory leakage.

The SA engine chip integrated in 40 nm CMOS is able to
support the simultaneous reconstruction of over 200 channels
of physiological signals by consuming <1% of a smartphone’s
power budget. In a CS-based health monitoring system, the
SA engine chip can enable a two-to-three-time lower energy
at the sensor nodes through compressive sampling [5], while

providing timely feedback and bringing signal intelligence
closer to the user.

APPENDIX
A. Notations

The following conventions apply to the notations in this
paper. A matrix is denoted as an upper-case bold letter (e.g.,
A). A vector is denoted as a lower case letter (e.g., a). a;,
when bolded, represents the ith column vector of matrix A.
a;, when not bolded, represents an arbitrary vector indexed by
i. z (i) represents the ith element of vector . A set of index
is denoted by an upper case Greek letter (e.g., A). Ax, when
bolded, represents the set of column vectors of A that are
indexed by A, and x (A) represents the set of elements of « that
are indexed by set A.

B. Compressive Sensing

Let oo € R™ be a compressible signal that has a sparse rep-
resentation © € R™ on a certain orthogonal basis ¥ € R**",
given as

a=Wr ()

where x is a k-sparse vector that contains only k nonzero ele-
ments, denoted as x € S}. Then, the compressive sampling is
performed by applying a linear mapping on « through a random
matrix ®@ € R™*" expressed as

y=0a+p 3)

where (3 is an additive noise imposed by the sampling process.
According to (2), the linear mapping in (3) is as if encoding
the sparse coefficient = through another random matrix A €
Rmx’ﬂ as

y= Az + [ 4)
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where A is uniquely defined by A = @W. CS theorem tells us
that as long as @ satisfies the null space property (NSP) and the
restricted isometry property (RIP) of order 2k [3], [4], the signal
information = (in the sparse domain) can be well preserved by
the random encoding scheme in (3) or (4). This holds true even
when the sampling matrix ® is a underdetermined matrix with
m < n (so does A), which represents a dimensionality reduc-
tion from R”™ to R™. In this case, the random measurement y is
a compressed representation of the signal’s sparse coefficient x
that is encoded by A. It is proven that ® randomly generated
from sub-Gaussian distributions, such as random Bernoulli or
random Gaussian matrices, can easily satisfy both the NSP and
the RIP of order 2k given the condition of

m2C~k~10g<%) 5)
where C' is a constant. In the context of this paper, n, m,
k denote the signal dimension, measurement dimension, and
signal sparsity level, respectively. In addition, k/n and m/n
denotes the signal sparsity ratio and the under-sampling ratio
that indicate the data size reduction achievable by conventional
orthogonal transformation-based compression methods and the
compressive sampling method, respectively.

To recover the original signal o, or equivalently its sparse
coefficient x, we need to solve the linear equation in (4). Note
that (4) is an underdetermined system equation with infinite
possible solutions. However, it can be proven that by utiliz-
ing the sparsity condition x € S} as prior knowledge, = can be
robustly estimated by solving the ¢y pseudonorm minimization
problem, defined as

min || /g, subjectto ||y — Ax|s <e (6)
where ¢ is the error tolerance that should be greater than the
noise’s energy level given as || 3||2 < e. The formulation in (6),
a.k.a. the SA problem, is the optimization problem of finding
the sparest vector out of the solution space constrained by the
linear mapping in (4). Thanks to the rich research in the field
of CS, the SA problem in (6) can be either solved by heuristic
methods such as OMP [12] and stage-wise OMP (StOMP) [13],
or be relaxed to a /1-norm minimization problem and solved by
linear programming [3], [4].
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