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ABSTRACT

Online testing vehicle is required for 3D TSV pre-bond and
post-bond testing due to high probability of TSV failures.
It has become a challenge to deal with large sets of gener-
ated testing data with limited probing when transmitting
the data out. In this paper, a lossless compressive-sensing
based testing vehicle is developed for online testing of TSVs.
By exploring sparsity of the testing data under constraint of
failure bound of TSV, sparse-representation based encod-
ing can be deployed by XOR and AND network on chip to
deal with large volume of testing data. Experimental results
(with benchmarks) have shown that 89.70% pre-bond data
compression rate can be achieved under 0.5% probability of
failures; and 88.18% post-bond data compression rate can
be achieved with 5% probability of failures.

1. INTRODUCTION

With the introduction of vertical through silicon via (TSV)
3D-1C provides energy efficient interconnect for memory and
logic integration [1]. However, 3D-IC has low yield with high
probability of TSV manufacturing defects [2]. TSV may
be shorted to substrate due to pin-hole or open because of
micro-void or partial filling [3]. To increase the yield, online
TSV testing vehicle is thereby required to provide just-in-
time diagnosis to detect faulty TSVs and replace them with
redundant TSVs [4, 5] to achieve self-healing (TSV repair).

Due to the stacking nature of 3D-1C, TSV testing is needed
for every layer before stacking. However, the testing data
can be only collected from specially designed probe pad as
shown in Fig. la, which are limited in number due to area
limitation. After bonding, the bottom die can communicate
with the external tester. Therefore, as shown in Fig. 1b,
the testing data has to be transferred from bottom die to
upper die through the so-called TSV elevator [6]. As the
3D-stacking is mainly applied for high-volume I/O circuits
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(with TSV density of 10,000/mm? or more) [7, 8], it poses
a grand challenge for TSV pre-bond and post-bond testing
because the bandwidth of TSV testing data becomes the
primary bottleneck [5, 9] for online TSV testing vehicle. As
such, one needs to develop an efficient yet low-loss method
to compress TSV testing-data with preserved fault detection
information.
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Figure 1: (a) Probing on extra DFT pads in pre-bond testing
(b) TSV elevator in post-bond testing

Conventional testing data compression is widely used with
according simple compaction circuits. It can be categorized
as space compression and time compression. For space com-
pression, XOR network is used to reduce many testing bits
into single bit, which is however, limited by high aliasing rate
because any even number of faulty responses could cancel
error with a ’correct’ response. For time compression such
as multiple input signature register (MISR) method, it can
achieve lower aliasing effect for conventional testing but can-
not be directly deployed in the TSV testing because of the
clustering effect [10, 11]. Furthermore, such a many-to-one
compression method provides less online diagnosis informa-
tion for TSV self-healing, which is a critical to improve the
TSV yield.

In this paper, to perform online testing with improved
bandwidth, we propose a lossless data compression method
based on compressive-sensing for both pre-bond and post-
bond TSV testing. It has no aliasing rate with on-chip data
compression and off-chip lossless data recovery with accord-
ing online hardware implementation for testing data com-
pression. The problem of compressive-sensing based TSV
testing data compression is formulated to find the maximum
compression rate with lossless recovery under the constraint
of TSV failure probability. For the pre-bond TSV testing,
the failure probability refers to TSV failure probability due
to variation of manufacturing [7]; whereas for the post-bond
TSV testing, the failure probability is the faulty IC prob-
ability resulting in error output during functional testing



[12]. Experiment results show that with the testing data
compression, 89.70% data compression rate can be achieved
under 0.5% failure probability and 88.18% post-bond data
compression rate with 5% failure probability.

The rest of the paper is organized as follows. Section II
provides the TSV online testing vehicle architecture with
the according problem formulation. Section III discusses
the compressive-sensing based testing data compression and
recovery. Section IV shows the application in pre-bond and
post-bond TSV testing. Section V presents the numerical
results with conclusion drawn in Section VI.

2. COMPRESSIVE 3D-IC TESTING PROB-
LEM

In this section, we will present the 3D-IC testing archi-
tecture for pre-bond and post-bond online TSV testing with
the probe pad and TSV elevator. Moreover, the problem
of the testing data compression is formulated based on this
testing architecture.

2.1 TSV Testing Vehicles

The online TSV testing vehicle architecture can support
pre-bond die testing, post-bond stack testing and board level
interconnect testing based on [6]. Pre-bond testing is mainly
designed to detect TSV manufacturing faults; while post-
bond testing is not only for TSV interconnect testing but
also for scan-chain and functional testing. As shown in Fig.
2, the testing wrapper will provide testing access mecha-
nism (TAM) and send/receive testing signal to/from I/Os
of external stack. Testing data will be injected from probe
pad for pre-bond testing or from bottom die to upper die
through TSV elevator for post-bond testing. Decoder will
decode the input testing data and function as Automatic
Testing Pattern Generator (ATPG) to cover the sequential
and combinational circuits. The testing data is collected
from the scan chain and compressed by the testing data
compression (TDC) block. Then, such compressed testing
data will be transported from the upper die to the bottom
and eventually collected by the tester or probe pad. For pre-
bond TSV testing, the expected output is the same as the
input testing data, whereas for post-bond TSV testing the
expected output is collected from output bandwidth based
on time-division multiplexing technique, in which the first
slot is used for expected output and the remaining slots are
for compressed testing data output [13]. Therefore, no ad-
ditional bandwidth is required for expected output.

For the pre-bond TSV testing, testing each TSV is time
consuming and impractical [5, 7], groups of TSVs are tested.
The TSV groups are formed based on the pitch of probe
head such that the probe can contact the whole TSV group
at once. The faulty TSV interconnect can be detected by
the difference between the received signal and expected sig-
nal. The target of pre-bond TSV testing data compression
is to minimize the output bits to save testing time while be
able to lossless recover original signal to provide diagnostic
information for TSV repair. Probe pad is used to collect the
pre-bond TSV testing data.

For the post-bond TSV testing, as there are only TSV
elevators and probe pads to provide input and output data
for non-bottom die, the testing time is constrained by the
bandwidth, given a large volume of testing data. More-
over, increasing the number of TSV elevator will incur more

die area and reduce the functional TSV densities. There-
fore, data compression is needed to reduce the bandwidth
requirement of TSV elevator and save testing time.

2.2 Problem Formulation

As previously discussed, lossless testing data compression
is required to provide diagnostic information for TSV re-
pair. The main proposed solution here is to fully utilize the
compressive-sensing to compress the TSV testing data with
high data compression rate under the given failure probabil-
ity while being able to losslessly recover the original signal.
Here, we assume that the TSV failure probability is known
prior. As such, the TSV testing data compression problem
can be formulated.

Problem: Find minimum number of output bits OB to
locate faulty TSV/IC Efquit € RY

Min. < OB = M Log>(Maxz(Y)) >
S.T.(i) Xr = (I + Efaunt) Xe
(1) Y = (X, — Xe)
(Z”) HEfaultHO <K

(1)

where X, € RY and X. € RY denote the received and ex-
pected testing data through TSV for pre-bond testing or
scan chain for post-bond testing and Y € R™ is the com-
pressed output testing data. ® € RV is the compressive-
sensing matrix generated from TDC block using XOR-AND
networks. M and N is the compressed testing data length
and original testing data length respectively. Ejfquir € RN
are the defective TSV location in the pre-bond testing, while
for the post-bond testing, Efqui¢ represents the error bits
introduced by faulty ICs. Sparsity K represents the max-
imum number of non-zero values in Efqu;: , which can be
estimated by the TSV failure probability or IC failure prob-
ability. The lossless compression thereby means that when
given the compressed result Y and sensing matrix ¢, we can
losslessly recover Eyquie such that no TSV testing data in-
formation is lost. By making use of sparsity of Etqui, an
unique sparse solution can be found for the undetermined
linear system [14, 15]. Please note that only compression
process performed as Y = ®(X, — X.) is on-chip. The rest
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Figure 2: TSV testing vehicle with compressive-sensing
based testing circuits



computation including testing data recovery is performed
off-chip.

3. COMPRESSIVE-SENSING BASED COM-
PRESSION ALGORITHM

In this section, we discuss the sparsity of the testing data

which is the foundation to perform compressive-sensing. More-

over, orthogonal matching pursuit is introduced here to solve
undetermined equations. Please note that this section fo-
cuses on testing data analysis and recovery.

3.1 Sparsity of Testing data

Traditional lossless testing data compression methods such
as length run (LR) coding and Golomb coding (GLC) are
limited by the hardware implementation complexity for high
volume of testing data. Compressive-sensing is one recently
developed compression technique with sparse-representation
of data by finding the most sparse solution of undetermined
linear systems [14, 16]. Such a compression method results
in simple encoding with comparable hardware implementa-
tion complexity as MISR since only XOR and AND network
is required on-chip with data reconstruction off-chip.

To perform compressive-sensing, sparsity of testing data
is estimated based on its yield. For TSV testing, signal is
sparse in nature as only 1 — yield portion of data is nonzero
if we compare the received result to expected outcome us-
ing XOR operation. For a common TSV yield such as 99%
under pre-bond testing, there are 99% interconnects func-
tioning properly. The defects are sparse in this sense indi-
cating that the difference between the received and expected
outputs are sparse with only 1% non-zero value at locations
of faulty TSV interconnects. Similar to the pre-bond test-
ing, the post-bond functional testing data can also be sparse
by taking the difference between the received and expected
data [12]. In order to know the sparsity, we need to estimate
the TSV yield Y. and IC fault-free probability Yjos:. Fig.
3 shows the testing data by XOR the expected and received
expected output for 1024 TSV under different yields. Sig-
nal difference ‘1’ indicates an defective TSV. Thus, we can
conclude that the higher yield, the more sparse the testing
data will be.

Similar to [11, 17], we assume a uniform failure probability
p for TSV under testing following binomial distribution. The
overall probability of having x defective TSVs is

Ypre _ C%Tsvpx(l _ p)NTSV—ac (2)

where Nrgy is the number of TSVs. The yield of pre-bond
TSV can be calculated as x = 0. Similarly for post-bond
TSV testing, the fault-free IC probability can be estimated
using Poisson distribution [18].

Nyfaquit
v _ (Ncom * PCOm) M —Neom*Peom (3)
post — Nf . | e
ault-:

where Nyquity is the number of faulty components. Neom
and Peom are the number of components and the probabil-
ity of being faulty components respectively. The IC failure
probability is Ppost = 1 — Ypost(Nfauie = 0).

For post-bond, due to the application of ATPG and differ-
ent functional testing algorithms, the testing data may not
directly reflect the faulty component location. Therefore,
the clustering effect is not considered. As the affected out-
put bits due to faulty IC components depends on the testing

algorithm, we assume the affected output signal (error bit
probability) is proportional to faulty component probabil-
ity. For pre-bond TSV testing, TSV testing data is directly
related to faulty TSV location. The clustering effect is con-
sidered and there exists a spatial correlation between defec-
tive TSVs. This indicates that presence of a defective TSV
increases the probability of defective TSV nearby. Based on
[11, 17], the probability of defect for i-th TSV P; can be
modeled as below.

P, =P(1+ i(l/dic)a) (4)

where P is the single TSV failure rate, d;. is the distance
between the T'SV; and cluster center, and « is the cluster-
ing coefficients indicating cluster extent. A large « indicates
higher clustering effect. In our simulations, we assume the
cluster center is injected randomly and only forms a pro-
portion of total defective TSV number. The rest of failure
TSV is generated with the combination of failure probability
and clustering effect as mentioned in (4). The testing data
compression rate N¢ and output bandwidth improvement
for both pre-bond and post-bond circuit can be defined as
follows.

N N 1
M *logs(Maz(Y))" ¢~

Bw[mp = (5)

Bw[mp
where Maxz(Y') is maximum digital value of the compressed
testing data, and IV is the original data size. Please note that
for a given bandwidth, data compression is equivalent to im-
prove bandwidth, which has the same effect on throughput.
We select the maximum code bit size log2(Maz(Y)) to ease
the decoding after receiving them from probe pad or tester.

3.2 Lossless Compression and Recovery in 7,
Norm

The lossless compression is performed on-chip; whereas
recovery is done off-chip. The recovery of compressed testing
data can be formulated as Lo norm minimization problem
given below:

argmin 1 Efautell

6
Y = (I)Efault ( )

subject to
where Fqu is N dimensional sparse testing data (Efquie €
RY), @ is the sensing matrix (® € RM*N ) generated by
TDC from XOR-AND network, and Y is the compressed
testing data in low dimension (Y € R and M < N).
Note the solution of Lo norm is equivalent to L1 norm with
overwhelming probability [14].
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Figure 3: (a) Sparse data for yield (Ypre) of 95% (b) sparse
data for yield (Ypre) of 99%



To ensure a successful recovery without loss, the sensing
(or sampling) matrix must satisfy the restricted isometry
property (RIP) [14]. In this paper, we use random Bernoulli
matrix that can be implemented from pseudo number gen-
erator in hardware with well recognized RIP property. For
the online TSV testing vehicles in Section 2, we can imple-
ment a counter to record non-zero values for lossless data
compression and reconstruction. The minimum dimension
M of compressed testing data [14] is

M = O(Klog(N/K)) (7

where K is the sparsity of data that can be estimated as (8)
and N is the total length of original testing data. N has
relationship with number of TSV Nrgy by N = Nrgy *
Ndata, where Ngqiq is the number signal sent from each T'SV.
From (7), we can sample the signal based on its sparsity. The
sparsity K can be estimated as below.

K = Ceil(N — NYp.) (8)

where Y. is the yield of pre-bond TSV testing. If we re-
place Ypre by Ypost, the sparsity K for the post-bond TSV
testing can also be calculated.

3.3 OMP based Compressed Data Recovery

As discussed in Section 3.1, Lo norm solution can be ap-
plied to solve (6). In this paper, we deploy the Orthogonal
Matching Pursuit (OMP) solver for the Lo norm solution,
which is a heuristic solver based on greedy algorithm to find
the most sparse solution [19]. More details on compressed
testing data recovery from OMP are provided in Algorithm
1. The residual is initialized as compressed testing data Y.
Index set Ao and chosen matrix ®¢ are empty. The largest
correlated column is found from Step 4, while index and cho-
sen matrix will be updated as Step 5. The new estimated
testing data is reconstructed in Step 6 via L2 minimiza-
tion. The residual is updated from the estimated testing
data and compressed testing data. The iteration will stop
after K iterations. In summary, OMP performs two func-
tions as follows. Firstly, it finds the most correlated column
from the sensing matrix ¢ by comparing simple dot multi-
plication. Secondly, the largest correlated column is added
to the selected column and by solving a L2 norm minimiza-
tion, the most fitted new estimate testing data is generated.
This procedure will repeat K times to find the recovered
testing data. Note that K is the sparsity of the testing data
E¢quity, which can be estimated from the Yj,re and Ypost.

4. COMPRESSIVE-SENSING BASED HARD-

WARE IMPLEMENTATION

In this section, we will discuss the hardware implemen-
tation of compressive-sensing with XOR and AND network
followed by the application of compressive-sensing to pre-
bond and post-bond TSV testing.

4.1 Compressive-sensing based Testing Circuit

To perform the data compression using the proposed algo-
rithm, outputs from the scan chain and expected output are
provided as inputs for the testing data compression (TDC),
as shown in Fig.2. Note that X-states (unknown states) will
be masked to '0’ based on the information from testing data
controlled by mask controller. The TDC testing can be im-
plemented using adders and XOR gates as shown in Fig. 4.

Algorithm 1 Orthogonal Matching Pursuit Algorithm

Require: An MxN TDC generated sensing matrix ® =[ ¢1, ¢2,
..,pN], an M-dimensional compressed testing data Y and
yield Y, yield

Ensure: An accurate testing data Eyqyisy

1: Initialize the residual 7o = Y, the index set Ag =0, @4, =
0 and iteration counter t = 1.

: Calculate sparsity K = Ceil(N — NYy;ciq)

: While (¢t < K)

: Find column index A:+ of ® correlates Y most as below

M= argmazj—1,. .N|<ri-1,90; > |,
: Update column index set and matrix of chosen columns
Ay = A1 U N
D4, :[¢At—1 LIDM]
1 Solve a least squares problem to obtain new signal
xy = argmin|| Y-®,u, z ||2
. Calculate the new approximation and residual
at :<1>At33t, re =Y —at, t=t+1
: End While
: Efaulty =Tt

ot =N

o N O

The scan chain output and the expected output from the
probe pad are XORed to obtain the testing data, Efrquity ,
which is normally sparse with ‘1’ to denote the failure. The
Bernoulli function is realized using a linear feedback shift
register (LFSR) with M measurements collected after per-
forming M shifts. Here, M is the dimension of compressed
testing data Y. Furthermore, the Bernoulli matrix is mul-
tiplied with the testing data using AND gates, where bits
are added using the adder and fed to the probe pad. This
implementation reduces the number of outputs from N di-
mensions to M dimensions. Note that the above-mentioned
TDC implementation is suitable for both pre-bond and post-
bond TSV testing on-chip.

4.2 Pre-bond TSV Testing

For pre-bond TSV testing, short or open defects will lead
to receive incorrect testing data, which can be used to de-
tect faulty TSVs after comparing to the expected data. Fig.
5a shows an example of TSV failure. In general, the size of
probe heads is large compared to the pitch of TSVs. Hence,
the probe head will contact a group of TSVs instead of each
individual TSV. As shown in Fig. 5b, among the group of
TSVs, only a few can have the I/O driving ability, which
can be used to output the testing data and the rest can only
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Figure 4: Compressive-sensing based testing circuit diagram
for testing data compression
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Figure 5: Conceptual diagram for pre-bond TSV testing

receive data from probe. As multiple TSVs are connected
to one probe head, it is important to differentiate each TSV
in the receiving end. Similar to [20], a scan flip-flop (SF)
controlled by digital enable circuit is utilized to differenti-
ate the input from the TSVs as described in Fig. 5c. This
received data from top SF is provided as the input to the
XOR network of TDC (in Fig. 4) and then the compressed
testing data Y is sent through top TSV with I/O. The orig-
inal testing data Efqui¢ can be recovered from compressed
testing data Y based on the proposed Algorithm 1.
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Figure 6: Conceptual diagram for post-bond TSV testing

4.3 Post-bond TSV Testing

For post-bond functional testing, our proposed compres-
sion technique can work independently or co-work with con-
ventional MISR techniques to further compress the testing
data depending on the lossless/lossy testing requirement.
Our proposed compression algorithm provides general solu-
tions to digital signal lossless compression. Fig. 6 shows
a conceptual post-bond TSV testing diagram where built-
in-self-test (BIST) circuit is shared between different TSV
groups. The signal generated from BIST is scheduled and
sent to router. Router will send the signal to TSV group
driver for testing purposes by a sequence of digital bits simi-
lar as in the pre-bond test. Testing data compression (TDC)
will receive the expected testing data from the router and
compress them. Similarly ATPG can also be performed
where the expected output is known. As shown in Fig. 4,
the compressed testing data Y is collected and original test-
ing data Fjfqu can be recovered from Y as shown in the
proposed Algorithm 1.

4.4 TSV Testing Flow

Fig. 7 depicts the overall testing flow for the proposed
TSV online testing vehicle. The input patterns and the ex-
pected output will be sent to device under test (DUT) and
XOR~AND network respectively through input and output
testing pads or elevators as shown in Fig. 2. Note that
the expected output will be sent through output testing
pads based on time-division multiplexer (TD-multiplexer).

Therefore, no additional bandwidth is required. The test-
ing data compression (TDC) will compress the testing data
through XOR-AND network described in Fig. 4. The com-
pressed testing data will be sent to off-chip computational
resource for recovery. Note that as for the existing MISR-
based compression method, faults are detected from one-in-
many testing based on single signature. Insufficient diagnos-
tic information is available to designers. Moreover, detection
failure rate of MISR increases due to the error-cancelling ef-
fect under the clustering effect and the non-uniform TSV
failure probability. In contrast, the proposed method per-
forms the lossless compression without the error-cancelling
effect. Moreover, it results in pin-level output of testing data
for TSV self-repair or the other debugging capability.

5. SIMULATION RESULTS

In this section, we discuss the experiments set-up, the test-
ing data recovery and compression for pre-bond and post-
bond TSV testing. The compressive-sensing based TSV test-
ing simulation platform is implemented in Matlab 2014a on
a computer with 3.2 GHz core and 8.0G memory.

5.1 Experiment Set-up

Firstly, we present the compressed testing data of TSVs
under different yields and the corresponding reconstructed
data. The experiment is performed for 1024 number of TSV
with input as ’1” for each TSV to verify whether "1’ is re-
ceived. Faulty TSV is inserted based on (2).

Secondly, for pre-bond TSV testing, 4096, 16384 and 65536
TSVs are tested with a scan signal and a 3-bit testing out-
put [20]. To model defective TSV distribution, 10% defective
TSVs are inserted as center in a TSV map; and the rest is
generated based on clustering effect presented in (4).

Finally, for post-bond TSV testing, the proposed testing
data compression method is applied for ISCAS-85 bench-
marks [21] in Verilog based on stuck-at fault model. The
testing pattern is generated using Mintest [22], which pro-
vides 100% fault coverage. An 8-bit output signal after scan
testing is assumed and error bit probability is modeled based
on (3) for stuck-at fault model. We select length-run (LR)
coding and Golomb coding (GLC) coding for performance
comparison as they both perform lossless compression and
close to the entropy of information [23]. The area over-
head of proposed TDC is synthesized using DC Synopsys
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Table 1: Testing data Compression Rate and Bandwidth Improvement in Pre-bond Testing with 0.5 % (upper row) and 1% (lower row)
Failure Rate

Length Run Golomb Coding Golomb Coding Golomb Coding
foﬁ)’er Cluster Proposed Coding GS= 8 GS= 16 GS =32
Comp. Rate | Bw Imp. | Comp. Rate | Bw Imp. | Comp. Rate | Bw Imp. | Comp. Rate | Bw Imp. | Comp. Rate | Bw Imp.
@ =0 89.45% .48 x 81.80% 5.49 x 76.83% 132 x 79.98% 5.00 x 81.23% 5.33 x
a=1 89.70% 971 X BT.14% 5.30 X 77.29% T.40 X 80.18% 5.05 X 81.30% 535 X
1096 o =2 89.32% 9.36 x 8T52% 541 % 76.68% 29 % 79.76% 194 x 80.98% 5.26 X
a=0 65.20% 788 X 50.99% 2.04 X 35.57% T.55 X T1.38% T80 x I8.02% T2 X
a=1 65.03% 786 X 50.73% 2.03 X 35.57% T55 X T3.80% T78 x T7.29% T.00 X
a=2 66.48% 708 X 51.52% 7.06 X 37.16% T59 15.85% T85 x 1951% TO8 X
a=0 89.16% 9.22 x 80.37% 5.00 x 75.95% 116 x 79.11% 4.79 x 80.38% 5.10 x
a=1 89.23% 9.08 x 80.15% 5.04 x 73.99% 384 x 77.28% 140 x 78.63% 168 x
16384 a=2 89.35% 9.39 X 80.47% 512 x 75.59% T10 x 78.89% T71x 80.27% 5.07 X
@ =0 64.80% 281 x 19.42% TO8 X 31.08% T52 x I3.39% T77 X a7.35% T.90 x
a=1 64.20% 780 X 16.93% T88 X 29.49% T2 x 38.37% T62 x 12.03% T73 X
a=2 G1.86% 785 X 50.62% 7.03 X 3151% T53 x I3.81% T78 x T7.73% TOI x
a=0 89.17% 9.24 x 79.77% 194 x 73.48% 377 x 76.86% 132 x 78.26% 160 x
a=1 89.21% 9.27 X 79.73% 193 x 73.00% 3.72 X 76.65% 128 x 78.12% 157 x
65536 a =2 89.24% 9.30 x 79.38% 185 x 73.49% 377 X 76.86% 132 x 78.26% 160 x
a =0 65.32% 788 x 50.03% 2.00 x 3107% T52 x 13.35% T77 X I7I17% T89 x
a=1 64.59% 282 x I857% T.04 x 31.19% T52 x I3.41% T.77 X a7.28% T.90 x
a=2 64.88% 785 X T7.08% T80 x 76.63% 136 X 10.21% T67 x 15.34% T83 x
(D-2010.03-SP2) and estimated 4522um? using 65nm pro- < 00
cess technology from Globalfoundries. =8 —=—95% Yield -g,
Be —+— 90% Yield 5
. . . . S .
5.2 Compressive-sensing in TSV Testing S —— 99% Yield T .
T Q
As shown in Fig. 4, the XOR of received and expected g 4 g
data is multiplied by a Bernoulli based sensing matrix ®, § 2 § -0.005
which is generated from a binary pseudo number genera- o T o0t

tor. The TSV with defects will not receive '1’ and there-
fore the XOR result will be ’1’; indicating the failure of this
TSV. Furthermore, one encoded output is generated from
the adder based on the row of sensing matrix ¢ multiplied
by the XOR result. As an example, we collected 200 output
measurements and plotted the adder output under different
yields in Fig. 8. From Fig. 8(a), one can observe that the
adder results are smaller for TSV with 99% yield, compared
to adder results shown in Fig. 8(b) for TSV with yield 95%.
It indicates that high yield testing data will required less
bits for encoding, which results in higher compression rate
as per Equation (5).
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Figure 8: (a) Compressed output for yield of 99% (b) com-
pressed output for yield of 95%

Furthermore, the minimum number of required measure-
ments (dimension of compressed testing data) under dif-
ferent yields to achieve a lossless recovery is presented in
Fig. 9. As illustrated in Fig. 9(a), the difference be-
tween the recovered and original data decreases dramati-
cally as the measurements (M) increases, as expected from
the compressive-sensing theory [14] , indicating a least num-
ber of measurements are required for lossless compression.
As such, the higher the yield is, the less number of mea-
surements (M) is required. For example, when the yield
is as high as 99%, there are nearly 60 measurements good
enough to fully recover the testing data; whereas, there are
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0Nun? ger']c?f0 Mlggugg%ezn (s) TSV Index
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Figure 9: (a) Maximum difference vs. number of output (b)
signal reconstruction with 60 measurements for yield of 99%

nearly 190 measurements needed to fully recover the test-
ing data for yield 95%. Since the sparse solution is unique
[14], we can confirm the correctness of reconstruction by
performing OMP solver twice. For lossless reconstruction,
the maximum difference between the recovered and original
data should be sufficiently small. As Fig. 9(b) shows, for
99% yield, the maximum difference between the recovered
and original data is as small as £~2 for 60 measurements
to represent 1024 TSVs, corresponding to a 82.42% data
compression rate (1 — 60 x 3/1024).

5.3 Compressive-sensing in Pre-bond Testing

In Fig. 10, the red square is the defective TSV cluster
center and black circle is the defective TSV generated from
failure probability and clustering effect based on (4). X-axis
and Y-axis represent the location of TSV. The average fail-
ure probability is 20 % and due to the clustering effect, the
failure probability can be as high as 81.52% for the TSVs
close to the center as Fig. 10c. Table 1 shows the output
testing data compression rate for different clustering factor
a and the number of TSVs. A compression of nearly 89% is
achieved for 4096 TSVs with failure rate of 0.5%, but is re-
duced to nearly 66% with failure rate of 1%. This indicates
that more number of measurements is required for the loss-
less compression when the failure probability increases. It
also shows that despite the existence of clustering effect,the
compression rate will be maintained almost the same.

In addition, as shown in Table 1, we compare our com-
pression algorithm with length-run (LR) coding and Golomb
coding (GLC) based compression algorithms [23]. Note that
Golomb coding is greatly affected by the tunable group size
GS. For example, if we consider the case of 16384 TSVs with
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Figure 10: (a) No clustering effect (b) clustering effect with
a =1 (c) clustering effect with o = 2

failure probability 1% and clustering factor « as 1, our pro-
posed algorithm can successfully compress 64.29%; whereas
LR can only compress 46.93%; GLC with GS = 8,16,32
can only compress 29.49%, 38.37% and 42.03%, respectively.
The bandwidth improvement can also be derived from (5) as
shown in Table 1. Note that with increasing G'S, GLC com-
pression rate of testing-data will converge to the information
entropy. However, hardware complexity and decoding time
also increase dramatically, which limits us to compare until

GS = 32.
Table 2: Testing Data Compression in Post-bond Testing

Failure | Benchmark | Output [ Proposed LR GLC GLC
Prob. (bits) Coding | GS =8 | GS =16
c499 1696 88.15% 78.22% | 73.01% 76.42%
c432 196 88.18% 77.96% | 76.38% 78.57T%
c1908 2475 86.89% 73.69% | 72.83% 76.34%
5% c2670 6300 82.56% 73.81% | 69.77% 73.74%
3540 1870 87.76% 80.55% | 75.75% 78.72%
c5315 4674 81.80% 75.31% | 71.13% 74.97T%
c6288 416 85.65% 81.15% | 82.21% 84.13%
c7552 7992 80.30% 74.27% | 68.26% 72.49%
c499 1696 73.82% 59.53% | 50.17% 57.17%
c432 196 82.19% 68.67% | 63.06% 66.94%
c1908 2475 70.57% 56.00% | 45.86% 53.27%
10% c2670 6300 61.42% 55.17% | 44.25% 51.80%
3540 1870 70.82% 56.56% | 46.24% 53.76%
c5315 4674 63.71% 52.38% | 40.88% 49.14%
c6288 416 76.06% 58.51% | 49.83% 56.49%
c7552 7992 60.99% 54.45% | 43.95% 51.55%

5.4 Compressive-sensing in Post-bond Testing

We finally discuss the post-bond testing data compres-
sion. We assume 5% and 10% probabilities of failure IC
for an 8-bit output signal (signature), which mean 0.639%
and 1.308% failure probabilities for each bit. Similar to pre-
bond testing, we compare our proposed compression algo-
rithm with LR and GLC coding based compression algo-
rithms, and is presented in Table 2. It also shows that the
data compression rate outperforms length-run coding and
Golomb coding. The testing data compression for 5% failure
probability varies from 80.03% to 88.18%, whereas 74.27% to
68.26% for LR coding; and 76.42% to 72.49% for GLC with
GS = 16. For circuit c7552, our proposed algorithm has a
6.03% and 7.81% improvement compared to LR and GLC,
respectively. However, as failure probability increases, our
proposed testing data compression rate outperforms further
by 6.55% and 9.45% compared to LR and GLC with GS =
16 respectively. Moreover, since the proposed algorithm is
lossless compression, it can also co-work with MISR or other
conventional compression techniques to further compressed
the testing data with shared circuit implementations.

6. CONCLUSION

In this paper, the testing data compression is discussed
for pre-bond and post-bond TSV testing via compressive-

sensing based method. By exploring the sparsity of the
testing data, one can achieve on-chip data compression and

lossless off-chip data recovery. The encoding for compression
can be easily implemented on-chip using XOR and AND net-
works with significantly improved bandwidth for the output
of the testing data. As such, it can result in an efficient im-
plementation of online TSV testing vehicle to improve TSV
yield with TSV self-repair capability. Experiment results
with benchmarks have shown that 89.70% pre-bond data
compression rate can be achieved under 0.5% failure proba-
bility; and 88.18% post-bond data compression rate can be
achieved with 5% failure probability.
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